We initiate the study of passive environment-assisted communication via a quantum channel, modeled as a unitary interaction between the information carrying system and an environment. In this model, the environment is controlled by a benevolent helper, who can set its initial state such as to assist sender and receiver of the communication link (the case of a malicious environment, also known as jammer, or arbitrarily varying channel, is essentially well-understood and comprehensively reviewed). Here, after setting out precise definitions, focusing on the problem of quantum communication, we show that entanglement plays a crucial role in this problem: indeed, the environment-assisted capacity where the helper is restricted to product states between the channel uses is different from the one with unrestricted helper. Furthermore, prior shared entanglement between the helper and the receiver makes a difference, too
A quantum channel physically is a unitary interaction between the information carrying system and an environment, which is initialized in a pure state before the interaction. Conventionally, this state, as also the parameters of the interaction, is assumed to be fixed and known to the sender and receiver. Here, following the model introduced by us earlier [Karumanchi et al., arXiv[quant-ph]:1407.8160], we consider a benevolent third party, i.e. a helper, controlling the environment state, and how the helper's presence changes the communication game. In particular, we define and study the classical capacity of a unitary interaction with helper, indeed two variants, one where the helper can only prepare separable states across many channel uses, and one without this restriction. Furthermore, the two even more powerful scenarios of pre-shared entanglement between helper and receiver, and of classical communication between sender and helper (making them conferencing encoders) are considered.
The usefulness of the recent experimentally realized six photon cluster state by C. Y. Lu et al. (2007 Nature 3 91), is investigated for quantum communication protocols like teleportation, quantum information splitting (QIS), remote state preparation and dense coding. We show that the present state can be used for the teleportation of an arbitrary two qubit state deterministically. Later we devise two distinct protocols for the QIS of an arbitrary two qubit state among two parties and systematically compare their relative merits in terms of classical communication and security. Sixteen orthogonal measurement basis on the cluster state is constructed, which will lock an arbitrary two qubit state among two parties. The usefulness of the state for dense coding is investigated and it is shown that one can send five classical bits by sending only three qubits using this state as a shared entangled resource. We finally show that this state can also be utilised in the remote state preparation of an arbitrary two qubit state.
We introduce a new genuinely 2N qubit state, known as the "mirror state" with interesting entanglement properties. The well known Bell and the cluster states form a special case of these "mirror states", for N = 1 and N = 2 respectively. It can be experimentally realized using SW AP and multiply controlled phase shift operations. After establishing the general conditions for a state to be useful for various communicational protocols involving quantum and classical information, it is shown that the present state can optimally implement algorithms for the quantum teleportation of an arbitrary N qubit state and achieve quantum information splitting in all possible ways. With regard to superdense coding, one can send 2N classical bits by sending only N qubits and consuming N ebits of entanglement. Explicit comparison of the mirror state with the rearranged N Bell pairs and the linear cluster states is considered for these quantum protocols. We also show that mirror states are more robust than the rearranged Bell pairs with respect to a certain class of collisional decoherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.