In this paper, we propose to use a Conditional Generative Adversarial Network (CGAN) for distilling (i.e. transferring) knowledge from sensor data and enhancing low-resolution target detection. In unconstrained surveillance settings, sensor measurements are often noisy, degraded, corrupted, and even missing/absent, thereby presenting a significant problem for multi-modal fusion. We therefore specifically tackle the problem of a missing modality in our attempt to propose an algorithm based on CGANs to generate representative information from the missing modalities when given some other available modalities. Despite modality gaps, we show that one can distill knowledge from one set of modalities to another. Moreover, we demonstrate that it achieves better performance than traditional approaches and recent teacher-student models.
This paper presents a technique that combines the occurrence of certain events, as observed by different sensors, in order to detect and classify objects. This technique explores the extent of dependence between features being observed by the sensors, and generates more informed probability distributions over the events. Provided some additional information about the features of the object, this fusion technique can outperform other existing decision level fusion approaches that may not take into account the relationship between different features.
The importance of inference in Machine Learning (ML) has led to an explosive number of different proposals in ML, and particularly in Deep Learning. In an attempt to reduce the complexity of Convolutional Neural Networks, we propose a Volterra filter-inspired Network architecture. This architecture introduces controlled non-linearities in the form of interactions between the delayed input samples of data. We propose a cascaded implementation of Volterra Filtering so as to significantly reduce the number of parameters required to carry out the same classification task as that of a conventional Neural Network. We demonstrate an efficient parallel implementation of this Volterra Neural Network (VNN), along with its remarkable performance while retaining a relatively simpler and potentially more tractable structure. Furthermore, we show a rather sophisticated adaptation of this network to nonlinearly fuse the RGB (spatial) information and the Optical Flow (temporal) information of a video sequence for action recognition. The proposed approach is evaluated on UCF-101 and HMDB-51 datasets for action recognition, and is shown to outperform state of the art CNN approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.