Biofilms act as a reservoir of infection, and periodically release cells in vicinity that are capable of developing new biofilm colonies and disseminate infection. Many chronic bacterial infections are serious that are associated with biofilms and have high morbidity and mortality, partly due to their higher resistance to antimicrobial agents, and partly due to lack of strong biocides which can efficiently treat and inhibit biofilm formation. We recently demonstrated that nonequilibrium non-thermal dielectric-barrier discharge plasma (Plasma) can also be applied to control pathogens via applying treated-liquids, and these liquids acquire broad-spectrum antimicrobial properties. In present studies we demonstrated a range of plasma-activated simple chemical solutions which significantly inhibited biofilm formation by multidrug-resistant bacterial pathogens. Plasma-activated methionine solution exhibited strong inhibitory activity against the biofilms of carbapenem-resistant Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, metallo-β-lactamase (NDM1)-positive Klebsiella pneumoniae, and Enterococcus faecalis, and prevented the formation of biofilms by about 70% as compared to untreated controls in single exposure. In addition to inhibition of biofilm formation, a complete inactivation of biofilm-embedded bacterial cells was observed in less than 30 minute's exposure to candidate plasma-activated methionine solution. These findings suggest that plasma-activated solutions have a potential to prevent biofilm formation, and as biofilm inhibitor.
We developed a technique of generating nonthermal atmospheric plasma-activated solution that had broad-spectrum antibacterial properties. Plasma-activated phosphate-buffered saline (PBS) causes rapid inactivation of bacteria following generation of oxidative stress. However, dose optimization requires understanding of cellular mechanisms. The objective of this study was to explore genome-wise response to develop gene expression profile of Escherichia coli using DNA microarray following exposure to plasma-activated PBS solution. Upon exposure to plasma-treated PBS solution, E. coli cells had differentially expressed genes involved in oxidative stress, and cell envelope and membrane associated porin and transporters. The genes involved in house-keeping and metabolism, energy generation, motility and virulence were conversely downregulated. This is the first report which demonstrates a severe oxidative stress induced in E. coli cells in response to an exposure to nonequilibrium nonthermal dielectric-barrier discharge plasma-activated PBS solution, and the genes that are responsive to reactive oxygen species appeared to play a role in cellular stress. Such studies are important to identify targets of inactivation, and to understand plasmatreated solution and bacterial cell interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.