The food industry, along with the consumers, is interested in plant‐based diet because of its health benefits and environmental sustainability. Vicia faba L. (V. faba) is a promising source of pulse proteins for the human diet and can yield potential nutritional and functional ingredients, namely, flours, concentrates, and isolates, which are relevant for industrial food applications. Different processes produce and functionalize V. faba ingredients relevant for industrial food applications, along with various alternatives within each unit operation used in their production. Processing modifies functional properties of the ingredients, which can occur by (i) changing in overall nutritional composition after processing steps and/or (ii) modifying the structure and conformation of protein and of other components present in the ingredients. Furthermore, V. faba limitations due to off‐flavor, color, and antinutritional factors are influenced by ingredient production and processing that play a significant role in their consumer acceptability in foods. This review attempts to elucidate the influence of different ways of processing on the functional, sensory, and safety aspects of V. faba L. ingredients, highlighting the need for further research to better understand how the food industry could improve their utilization in the market.
Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacterium smegmatis (MsASL) and Mycobacterium tuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16A. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract• purB and purB bind by x-ray crystallography (View interaction)
Proteins from various sources are widely used in the food industry due to their unique functional performances in food products. The functional properties of proteins are somehow dictated by their molecular characteristics, but the exact relationship is not fully understood. This review gives a tangible overview of the methods currently available for determining protein functionality and related molecular characteristics in order to support further research on protein ingredients. The measurements of protein functionality include solubility, water holding capacity, oil holding capacity, emulsion property, foam property, and gelation. This review also provides a description of different methods of molecular characteristics including electrophoresis, surface hydrophobicity and charge, molecular interaction, and thermal property measurement. Additionally, we have put significant emphasis on spectroscopic methods (ultraviolet-visible, Fourier transform infrared, Raman, circular dichroism, fluorescence and nuclear magnetic resonance). In conclusion, first and foremost, there is a need to agree on a standardization of the analytical methods for assessing functional properties. Moreover, it is mandatory to couple different analyses of molecular characteristics to measure and monitor the structural changes obtained by different processing methods in order to gain knowledge about the relationship with functionality. Ideally, a toolbox of protein analytical methods to measure molecular characteristics and functionality should be established to be used in a strategic design of protein ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.