We propose an enhancement for the well-known greedy perimeter stateless routing (GPSR) protocol for vehicular ad hoc networks (VANETs), which exploits information about link reliability when one-hop vehicles are chosen for forwarding a data packet. In the proposed modified routing scheme, a tagged vehicle will select its one-hop forwarding vehicle based on reliability of the corresponding communication link. We define link reliability as the probability that a direct link among a pair of neighbour vehicles will remain alive for a finite time interval. We present a model for computing link reliability and use this model for the design of reliability based GPSR. The proposed protocol ensures that links with reliability factor greater than a given threshold alone are selected, when constructing a route from source to destination. The modified routing scheme shows significant improvement over the conventional GPSR protocol in terms of packet delivery ratio and throughput. We provide simulation results to justify the claim.
In Vehicular Ad Hoc Networks (VANETs), geographic routing protocols rely on a greedy strategy for hop by hop packet forwarding by selecting vehicle closest to the destination as the next hop forwarding node. However, in a high-mobility network such as VANET, the greedy forwarding strategy may lead to packet transmission failure since it does not consider the reliability of the newly formed link when next hop forwarding nodes are chosen. In this paper, we propose a scheme for next hop selection in VANETs that takes into account the residual lifetime of the communication links. In the proposed approach, a source vehicle selects a forwarding vehicle from a given set of candidate vehicles by estimating the residual lifetime of the corresponding links and finding the link with maximum residual lifetime. Initially, we present Kalman filter based approach for estimating the link residual lifetime in VANETs. We then present the details of the proposed next hop selection method. Simulation results show that the proposed scheme exhibits better performance in terms of packet delivery ratio and average end-to-end delay as compared to other conventional method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.