We present a novel semantic framework for modeling temporal relations and event durations that maps pairs of events to real-valued scales. We use this framework to construct the largest temporal relations dataset to date, covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to train models for jointly predicting fine-grained temporal relations and event durations. We report strong results on our data and show the efficacy of a transfer-learning approach for predicting categorical relations.
We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo. * Equal Contribution 1 Information on using the Docker container, web demo, and demo video at https://nlp.jhu.edu/demos.
We introduce five new natural language inference (NLI) datasets focused on temporal reasoning. We recast four existing datasets annotated for event duration-how long an event lasts-and event ordering-how events are temporally arranged-into more than one million NLI examples. We use these datasets to investigate how well neural models trained on a popular NLI corpus capture these forms of temporal reasoning.
No abstract
A Semantic Parser generates a logical form graph from an utterance where the edges are semantic roles and nodes are word senses in an ontology that supports reasoning. The generated representation attempts to capture the full meaning of the utterance. While the process of parsing works to resolve lexical ambiguity, a number of errors in the logical forms arise from incorrectly assigned word sense determinations. This is especially true in logical and rule-based semantic parsers. Although the performance of statistical word sense disambiguation methods is superior to the word sense output of semantic parser, these systems do not produce the rich role structure or a detailed semantic representation of the sentence content. In this work, we use decisions from a statistical WSD system to inform a logical semantic parser and greatly improve semantic type assignments in the resulting logical forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.