Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.
N-myristoyltransferase (NMT) is an important eukaryotic monomeric enzyme which has emerged as an attractive target for developing a drug for cancer, leishmaniasis, ischemia-reperfusion injury, malaria, inflammation, etc. In the present work, statistically robust machine leaning models (QSAR (Quantitative Structure–Activity Relationship) approach) for Human NMT (Hs-NMT) inhibitory has been performed for a dataset of 309 Nitrogen heterocycles screened for NMT inhibitory activity. Hundreds of QSAR models were derived. Of these, the model 1 and 2 were chosen as they not only fulfil the recommended values for a good number of validation parameters (e.g., R2 = 0.77–0.79, Q2LMO = 0.75–0.76, CCCex = 0.86–0.87, Q2-F3 = 0.74–0.76, etc.) but also provide useful insights into the structural features that sway the Hs-NMT inhibitory activity of Nitrogen heterocycles. That is, they have an acceptable equipoise of descriptive and predictive qualities as per Organisation for Economic Co-operation and Development (OECD) guidelines. The developed QSAR models identified a good number of molecular descriptors like solvent accessible surface area of all atoms having specific partial charge, absolute surface area of Carbon atoms, etc. as important features to be considered in future optimizations. In addition, pharmacophore modeling has been performed to get additional insight into the pharmacophoric features, which provided additional results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.