Few-shot segmentation (FSS) methods perform image segmentation for a particular object class in a target (query) image, using a small set of (support) image-mask pairs. Recent deep neural network based FSS methods leverage high-dimensional feature similarity between the foreground features of the support images and the query image features. In this work, we demonstrate gaps in the utilization of this similarity information in existing methods, and present a framework - SimPropNet, to bridge those gaps. We propose to jointly predict the support and query masks to force the support features to share characteristics with the query features. We also propose to utilize similarities in the background regions of the query and support images using a novel foreground-background attentive fusion mechanism. Our method achieves state-of-the-art results for one-shot and five-shot segmentation on the PASCAL-5i dataset. The paper includes detailed analysis and ablation studies for the proposed improvements and quantitative comparisons with contemporary methods.
Auscultation of respiratory sounds is the primary tool for screening and diagnosing lung diseases. Automated analysis, coupled with digital stethoscopes, can play a crucial role in enabling tele-screening of fatal lung diseases. Deep neural networks (DNNs) have shown a lot of promise for such problems, and are an obvious choice. However, DNNs are extremely data hungry, and the largest respiratory dataset ICBHI [21] has only 6898 breathing cycles, which is still small for training a satisfactory DNN model. In this work, RespireNet, we propose a simple CNN-based model, along with a suite of novel techniques-device specific fine-tuning, concatenation-based augmentation, blank region clipping, and smart padding-enabling us to efficiently use the smallsized dataset. We perform extensive evaluation on the ICBHI dataset, and improve upon the state-of-the-art results for 4-class classification by 2.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.