Recent advances in artificial intelligence along with the development of large data sets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far require the atomic positions obtained from geometry optimizations using high-level QM/DFT methods as input in order to predict the energies and do not allow for geometry optimization. In this study, a transferable and molecule size-independent machine learning model bonds (B), angles (A), nonbonded (N) interactions, and dihedrals (D) neural network (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and nonequilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N), and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational, and reaction space. The transferability of this model on systems larger than the ones in the data set is demonstrated by performing calculations on selected large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from nonequilibrium structures along with predicting their energies.
The design of new inhibitors for novel targets is a very important problem especially in the current scenario with the world being plagued by COVID-19. Conventional approaches such as highthroughput virtual screening require extensive combing through existing data sets in the hope of finding possible matches. In this study, we propose a computational strategy for de novo generation of molecules with high binding affinities to the specified target and other desirable properties for druglike molecules using reinforcement learning. A deep generative model built using a stack-augmented recurrent neural network initially trained to generate druglike molecules is optimized using reinforcement learning to start generating molecules with desirable properties like LogP, quantitative estimate of drug likeliness, topological polar surface area, and hydration free energy along with the binding affinity. For multiobjective optimization, we have devised a novel strategy in which the property being used to calculate the reward is changed periodically. In comparison to the conventional approach of taking a weighted sum of all rewards, this strategy shows an enhanced ability to generate a significantly higher number of molecules with desirable properties.
Solubility of drug molecules is related to pharmacokinetic properties such as absorption and distribution, which affects the amount of drug that is available in the body for its action. Computational or experimental evaluation of solvation free energies of drug-like molecules/solute that quantify solubilities is an arduous task and hence development of reliable computationally tractable models is sought after in drug discovery tasks in pharmaceutical industry. Here, we report a novel method based on graph neural network to predict solvation free energies. Previous studies considered only the solute for solvation free energy prediction and ignored the nature of the solvent, limiting their practical applicability. The proposed model is an end-to-end framework comprising three phases namely, message passing, interaction and prediction phases. In the first phase, message passing neural network was used to compute inter-atomic interaction within both solute and solvent molecules represented as molecular graphs. In the interaction phase, features from the preceding step is used to calculate a solute-solvent interaction map, since the solvation free energy depends on how (un)favorable the solute and solvent molecules interact with each other. The calculated interaction map that captures the solute-solvent interactions along with the features from the message passing phase is used to predict the solvation free energies in the final phase. The model predicts solvation free energies involving a large number of solvents with high accuracy. We also show that the interaction map captures the electronic and steric factors that govern the solubility of drug-like molecules and hence is chemically interpretable.
In drug discovery applications, high throughput virtual screening exercises are routinely performed to determine an initial set of candidate molecules referred to as "hits". In such an experiment, each molecule...
<div>Solubility of drug molecules is related to pharmacokinetic properties such as absorption and distribution, which affects the amount of drug that is available in the body for its action. Computational or experimental evaluation of solvation free energies of drug-like molecules/solute that quantify solubilities is an arduous task and hence development of reliable computationally tractable models is sought after in drug discovery tasks in pharmaceutical industry. Here, we report a novel method based on graph neural network to predict solvation free energies. Previous studies considered only the solute for solvation free energy prediction and ignored the nature of the solvent, limiting their practical applicability. The proposed model is an end-to-end framework comprising three phases namely, message passing, interaction and prediction phases. In the first phase, message passing neural network was used to compute inter-atomic interaction within both solute and solvent molecules represented as molecular graphs. In the interaction phase, features from the preceding step is used to calculate a solute-solvent interaction map, since the solvation free energy depends on how (un)favorable the solute and solvent molecules interact with each other. The calculated interaction map that captures the solute-solvent interactions along with the features from the message passing phase is used to predict the solvation free energies in the final phase. The model predicts solvation free energies involving a large number of solvents within the limits of chemical accuracy. We also show that the interaction map captures the electronic and steric factors that govern the solubility of drug-like molecules and hence is chemically interpretable.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.