Abstract-Existing high-dimensional motion planning algorithms are simultaneously overpowered and underpowered. In domains sparsely populated by obstacles, the heuristics used by sampling-based planners to navigate "narrow passages" can be needlessly complex; furthermore, additional post-processing is required to remove the jerky or extraneous motions from the paths that such planners generate. In this paper, we present CHOMP, a novel method for continuous path refinement that uses covariant gradient techniques to improve the quality of sampled trajectories. Our optimization technique converges over a wider range of input paths and is able to optimize higherorder dynamics of trajectories than previous path optimization strategies. As a result, CHOMP can be used as a standalone motion planner in many real-world planning queries. The effectiveness of our proposed method is demonstrated in manipulation planning for a 6-DOF robotic arm as well as in trajectory generation for a walking quadruped robot.
In this paper, we present CHOMP (Covariant Hamiltonian Optimization for Motion Planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to lowcost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using 7-DOF manipulators and a rough-terrain quadruped robot.
In this paper we present the Yale-CMU-Berkeley (YCB) Object and Model set, intended to be used for benchmarking in robotic grasping and manipulation research. The objects in the set are designed to cover various aspects of the manipulation problem; it includes objects of daily life with different shapes, sizes, textures, weight and rigidity, as well as some widely used manipulation tests. The associated database provides high-resolution RGBD scans, physical properties and geometric models of the objects for easy incorporation into manipulation and planning software platforms. A comprehensive literature survey on existing benchmarks and object datasets is also presented and their scope and limitations are discussed. The set will be freely distributed to research groups worldwide at a series of tutorials at robotics conferences, and will be otherwise available at a reasonable purchase cost.
Abstract-Rapidly-exploring random trees (RRTs) are popular in motion planning because they find solutions efficiently to single-query problems. Optimal RRTs (RRT*s) extend RRTs to the problem of finding the optimal solution, but in doing so asymptotically find the optimal path from the initial state to every state in the planning domain. This behaviour is not only inefficient but also inconsistent with their single-query nature.For problems seeking to minimize path length, the subset of states that can improve a solution can be described by a prolate hyperspheroid. We show that unless this subset is sampled directly, the probability of improving a solution becomes arbitrarily small in large worlds or high state dimensions. In this paper, we present an exact method to focus the search by directly sampling this subset.The advantages of the presented sampling technique are demonstrated with a new algorithm, Informed RRT*. This method retains the same probabilistic guarantees on completeness and optimality as RRT* while improving the convergence rate and final solution quality. We present the algorithm as a simple modification to RRT* that could be further extended by more advanced path-planning algorithms. We show experimentally that it outperforms RRT* in rate of convergence, final solution cost, and ability to find difficult passages while demonstrating less dependence on the state dimension and range of the planning problem.
Abstract-The ability of a robot team to reconfigure itself is useful in many applications: for metamorphic robots to change shape, for swarm motion towards a goal, for biological systems to avoid predators, or for mobile buoys to clean up oil spills. In many situations, auxiliary constraints, such as connectivity between team members or limits on the maximum hop-count, must be satisfied during reconfiguration. In this paper, we show that both the estimation and control of the graph connectivity can be accomplished in a decentralized manner. We describe a decentralized estimation procedure that allows each agent to track the algebraic connectivity of a time-varying graph. Based on this estimator, we further propose a decentralized gradient controller for each agent to maintain global connectivity during motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.