We show that harmonic driving of either the magnitude or the phase of the nearest-neighbor hopping amplitude in a p-wave superconducting wire can generate modes localized near the ends of the wire. The Floquet eigenvalues of these modes can either be equal to ±1 (which is known to occur in other models) or can lie near other values in complex conjugate pairs which is unusual; we call the latter anomalous end modes. All the end modes have equal probabilities of particles and holes. If the amplitude of driving is small, we observe an interesting bulk-boundary correspondence for the anomalous end modes: the Floquet eigenvalues and the peaks of the Fourier transform of these end modes lie close to the Floquet eigenvalues and momenta at which the Floquet eigenvalues of the bulk system have extrema.
We theoretically study dilute superfluidity of spin-1 bosons with antiferromagnetic interactions and synthetic spin-orbit coupling (SOC) in a one-dimensional lattice. Employing a combination of density matrix renormalization group and quantum field theoretical techniques we demonstrate the appearance of a robust superfluid spin-liquid phase in which the spin-sector of this spinor Bose-Einstein condensate remains quantum disordered even after introducing quadratic Zeeman and helical magnetic fields. Despite remaining disordered, the presence of these symmetry breaking fields lifts the perfect spin-charge separation and thus the nematic correlators obey power-law behavior. We demonstrate that, at strong coupling, the SOC induces a charge density wave state that is not accessible in the presence of linear and quadratic Zeeman fields alone. In addition, the SOC induces oscillations in the spin and nematic expectation values as well as the bosonic Green's function. These non-trivial effects of a SOC are suppressed under the application of a large quadratic Zeeman field. We discuss how our results could be observed in experiments on ultracold gases of 23 Na in an optical lattice. arXiv:1912.06142v1 [cond-mat.quant-gas]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.