Road safety remains a casualty in India, with potholes wrecking asphalt pavements by the dozens. A study in 2017 recorded that potholes caused the budget for road safety to increase by a whopping 100.4 per cent, and even doubled the death toll from that of the year prior. To address this situation, an effective solution is required that ensures the drivers’ safety and can prove beneficial for long term measures. This can be established by employing an apt pothole detection system which is simple yet functional. In this paper, the method for such a system is described which uses accelerometer and gyroscope, both built in the modern day smartphones, to sense potholes. Pothole induced vibrations can be measured on the axis reading, making them distinguishable. Our proposed Neural Network model is trained and evaluated on the data acquired from the sensors and classifies the potholes from the non-potholes. The neural network gives a classification accuracy of 94.78 per cent. It also presents a solid precision-recall trade-off with 0.71 precision and 0.81 recall, considerably high for a problem with class imbalance. The results indicate that the method is suitable for creating an accurate and sensitive supervised model for pothole detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.