A representation of the perturbation series of a general functional measure is given in terms of generalized Feynman graphs and rules. The graphical calculus is applied to certain functional measures of Lévy type. A graphical notion of Wick ordering is introduced and is compared with orthogonal decompositions of the Wiener-Itô-Segal type. It is also shown that the linked cluster theorem for Feynman graphs extends to generalized Feynman graphs. We perturbatively prove existence of the thermodynamic limit for the free energy density and the moment functions. The results are applied to the gas of charged microscopic or mesoscopic particles-neutral in average-in d = 2 dimensions generating a static field with quadratic energy density giving rise to a pair interaction. The pressure function for this system is calculated up to fourth order. We also discuss the subtraction of logarithmically divergent self-energy terms for a gas of only one particle type by a local counterterm of first order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.