Optical ignition of solid energetic materials, which can rapidly release heat, gas, and thrust, is still challenging due to the limited light absorption and high ignition energy of typical energetic materials (e.g., aluminum, Al). Here, we demonstrated that the optical ignition and combustion properties of micron-sized Al particles were greatly enhanced by adding only 20 wt % of graphene oxide (GO). These enhancements are attributed to the optically activated disproportionation and oxidation reactions of GO, which release heat to initiate the oxidization of Al by air and generate gaseous products to reduce the agglomeration of the composites and promote the pressure rise during combustion. More importantly, compared to conventional additives such as metal oxides nanoparticles (e.g., WO 3 and Bi 2 O 3 ), GO has much lower density and therefore could improve energetic properties without sacrificing Al content. The results from Xe flash ignition and laser-based excitation experiments demonstrate that GO is an efficient additive to improve the energetic performance of micron-sized Al particles, enabling micron-sized Al to be ignited by optical activation and promoting the combustion of Al in air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.