To investigate the dynamic aspects of gustatory activity, we recorded the responses of small ensembles of cortical neurons to tastants administered to awake rats. Multiple trials of each tastant were delivered during recordings made in oral somatosensory (SI) and gustatory cortex (GC). When integrated tastant responses (firing rates averaged across 2.5 sec) were compared with water responses, 14.4% (13/90) of the GC neurons responded in a taste-specific manner. When time was considered as a source of information, however, the incidence of taste-specific firing increased: as many as 41% (37/90) of the recorded GC neurons exhibited taste-specific patterns of response. For 17% of the neurons identified as responding with taste-specific patterns, the stimulus that caused the most significant response was a function of the time since stimulus delivery. That is, a single neuron might respond most strongly to one tastant in the first 500 msec of a response and then respond most strongly to another tastant later in the response. Further analysis of the time courses of GC and SI cortical neural responses revealed that modulations of GC firing rate arose from three separable processes: early somatosensory input (less than ϳ0.2 sec post-stimulus), later chemosensory input (ϳ0.2-1 sec), and delayed somatosensory input related to orofacial responses (more than ϳ1.0 sec). These data demonstrate that sensory information is available in the time course of GC responses and suggest the viability of views of gustatory processing that treat the temporal structure of cortical responses as an integral part of the neural code.
The hydration repulsive force between lipid bilayers and the deformability of both gel and liquid-crystalline bilayers have been quantitated by an X-ray diffraction analysis of osmotically stressed liposomes. Both sampling theorem reconstructions and electron density distributions were calculated from diffraction data obtained from multilayers with applied osmotic pressures of 0-50 atm. The bilayer thickness and area per lipid molecule remain nearly constant (to within about 4%) in this pressure range, as adjacent bilayers move from their equilibrium separation in excess water to within 2-4 A of each other. This analysis indicates that the bilayers are relatively incompressible. This results differs from previously published X-ray diffraction studies of bilayer compressibility but agrees with direct mechanical measurements of the bilayer compressibility modulus. It is also found that the hydration repulsive force decays exponentially with separation between bilayers with a decay constant of 1.4 A for gel-state dipalmitoylphosphatidylcholine and 1.7 A for liquid-crystalline egg phosphatidylcholine bilayers. This implies that the exponential decay constant is not necessarily equal to the diameter of a water molecule, as has been previously suggested on experimental and theoretical grounds.
Food palatability and hedonic value play central roles in nutrient intake. However, postingestive effects can influence food preferences independently of palatability, although the neurobiological bases of such mechanisms remain poorly understood. Of central interest is whether the same brain reward circuitry that is responsive to palatable rewards also encodes metabolic value independently of taste signaling. Here we show that trpm5-/- mice, which lack the cellular machinery required for sweet taste transduction, can develop a robust preference for sucrose solutions based solely on caloric content. Sucrose intake induced dopamine release in the ventral striatum of these sweet-blind mice, a pattern usually associated with receipt of palatable rewards. Furthermore, single neurons in this same ventral striatal region showed increased sensitivity to caloric intake even in the absence of gustatory inputs. Our findings suggest that calorie-rich nutrients can directly influence brain reward circuits that control food intake independently of palatability or functional taste transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.