Adopting a recurrence technique, generalized trigonometric basis (or GT-basis, for short) functions along with two shape parameters are formulated in this paper. These basis functions carry a lot of geometric features of classical Bernstein basis functions and maintain the shape of the curve and surface as well. The generalized trigonometric Bézier (or GT-Bézier, for short) curves and surfaces are defined on these basis functions and also analyze their geometric properties which are analogous to classical Bézier curves and surfaces. This analysis shows that the existence of shape parameters brings a convenience to adjust the shape of the curve and surface by simply modifying their values. These GT-Bézier curves meet the conditions required for parametric continuity (C0, C1, C2, and C3) as well as for geometric continuity (G0, G1, and G2). Furthermore, some curve and surface design applications have been discussed. The demonstrating examples clarify that the new curves and surfaces provide a flexible approach and mathematical sketch of Bézier curves and surfaces which make them a treasured way for the project of curve and surface modeling.
A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m. Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The $C^{3}$ C 3 and $G^{2}$ G 2 continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling.
Developable surfaces have a vital part in geometric modeling, architectural design, and material manufacturing. Developable Bézier surfaces are the important tools in the construction of developable surfaces, but due to polynomial depiction and having no shape parameter, they cannot describe conics exactly and can only handle a few shapes. To tackle these issues, two straightforward techniques are proposed to the computer-aided design of developable generalized blended trigonometric Bézier surfaces (for short, developable GBT-Bézier surfaces) with shape parameters. A developable GBT-Bézier surface is established by making a collection of control planes with generalized blended trigonometric Bernstein-like (for short, GBTB) basis functions on duality principle among points and planes in 4D projective space. By changing the values of shape parameters, a group of developable GBT-Bézier surfaces that preserves the features of the developable GBT-Bézier surfaces can be generated. Furthermore, for a continuous connection among these developable GBT-Bézier surfaces, the necessary and sufficient $G^{1}$ G 1 and $G^{2}$ G 2 (Farin–Boehm and beta) continuity conditions are also defined. Some geometric designs of developable GBT-Bézier surfaces are illustrated to show that the suggested scheme can settle the shape and position adjustment problem of developable Bézier surfaces in a better way than other existing schemes. Hence, the suggested scheme has not only all geometric features of current curve design schemes but surpasses their imperfections which are usually faced in engineering.
This study is based on some $C^{1}$ C 1 , $C^{2}$ C 2 , and $C^{3}$ C 3 continuous computer-based surfaces that are modeled by using generalized blended trigonometric Bézier (shortly, GBT-Bézier) curves with shape parameters. Initially, generalized blended trigonometric Bernstein-like (shortly, GBTB) basis functions with two shape parameters are derived in explicit expression which satisfied the basic geometric features of the traditional Bernstein basis functions. Moreover, the GBT-Bézier curves and tensor product GBT-Bézier surfaces with two shape parameters are also presented. All geometric features of the proposed GBT-Bézier curves and surfaces are similar to the traditional Bézier curves and surfaces, but the shape-adjustment is the additional feature that the traditional Bézier curves and surfaces do not hold. Finally, a class of some complex computer-based engineering surfaces via GBT-Bézier curves with shape parameters is presented. In addition, two adjacent GBT-Bézier surfaces segments are connected by higher $C^{2}$ C 2 and $C^{3}$ C 3 continuity constraints than the existing only $C^{1}$ C 1 shape adjustable Bézier surfaces. Some practical examples are provided to show the efficiency of the proposed scheme and to prove it as another powerful way for the construction and modeling of various complex composite computer-based engineering surfaces using higher-order continuities.
The exact vacuum solutions of static plane symmetric spacetimes in four, five, six and n-dimensions in metric approach of f (R) theory of gravity have already been found and are available in literature. In this paper, we extend the work done by Sharif and Farasat for the case of vacuum static plane symmetric solutions in f (R) theory of gravity to nonvacuum case. Two non-vacuum solutions have been determined by using constant Ricci scalar assumption. Moreover, for some specific choices of f (R) models, the energy distribution of these solutions has been explored by applying the generalized Landau-Lifshitz energy-momentum complex in the context of f (R) theory of gravity. In addition, we discuss the stability conditions for these solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.