Melanoma belongs to the category of inoperable type of skin cancers, and its occurrence rate has increased tremendously over the past three decades [1]. According to statistics provided by the World Health Organization (WHO), almost 132,000 new cases of melanoma are reported each year worldwide. It has been reported [2] that diagnosis of melanoma, in its early stages, significantly increases chances of the patient's survival. Dermatoscopy, also knows as dermoscopy is a non-invasive clinical procedure used for
This paper proposes a computer assisted diagnostic (CAD) system for the detection of melanoma in dermoscopy images. Clinical findings have concluded that in case of melanoma, the lesion borders exhibit differential structures such as pigment networks and streaks as opposed to normal skin spots, which have smoother borders. We aim to validate these findings by performing segmentation of the skin lesions followed by an extraction of the peripheral region of the lesion that is subjected to feature extraction and classification for detecting melanoma. For segmentation, we propose a novel active contours based method that takes an initial lesion contour followed by the usage of Kullback-Leibler divergence between the lesion and skin to fit a curve precisely to the lesion boundaries. After segmentation of the lesion, its periphery is extracted to detect melanoma using image features that are based on local binary patterns. For validation of our algorithms, we have used the publicly available PH dermoscopy dataset. An extensive experimental analysis reveals two important findings: 1). The proposed segmentation method mimics the ground truth data accurately, outperforming the other methods that have been used for comparison purposes, and 2). The most significant melanoma characteristics in the lesion actually lie on the lesion periphery.
In the fields of computer vision and image processing, edge detection refers to the identification and localization of significant changes in a digital image. This article presents a survey of widely-used edge detection techniques including linear approaches, morpohlogical operations, multi-resolution analysis, and machine learning methods. Since there exists no single method that is applicable in all situations, different methods are deployed for different applications. A hierarchical framework based on multiple criteria has been proposed here that can facilitate the process of selecting the most appropriate edge detection method in a given scenario. Use of the proposed framework has been explained through an example of medical images. Finally, possible areas for further exploration have been highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.