Abstract-This paper presents an experimental investigations and analyses of ultra-wideband antenna diversity techniques and their effect on the on-body radio propagation channels. Various diversitycombining techniques are applied to highlight; how the overall system performance may be enhanced. Diversity gain is calculated for five different on-body channels and the impact of variation in the spacing between diversity branch antennas is discussed, with an emphasis on mutual coupling, correlation and power imbalance.Results demonstrate the repeatability and reliability of the analysis with error variations as low as 0.8 dB. The study highlights the significance of diversity techniques for non-line-of-sight propagation scenarios in body-centric wireless communications.
The posture detection received lots of attention in the fields of human sensing and artificial intelligence. Posture detection can be used for the monitoring health status of elderly remotely by identifying their postures such as standing, sitting and walking. Most of the current studies used traditional machine learning classifiers to identify the posture. However, these methods do not perform well to detect the postures accurately. Therefore, in this study, we proposed a novel hybrid approach based on machine learning classifiers (i. e., support vector machine (SVM), logistic regression (KNN), decision tree, Naive Bayes, random forest, Linear discrete analysis and Quadratic discrete analysis) and deep learning classifiers (i. e., 1D-convolutional neural network (1D-CNN), 2D-convolutional neural network (2D-CNN), LSTM and bidirectional LSTM) to identify posture detection. The proposed hybrid approach uses prediction of machine learning (ML) and deep learning (DL) to improve the performance of ML and DL algorithms. The experimental results on widely benchmark dataset are shown and results achieved an accuracy of more than 98%.
The atrial fibrillation (AF) is one of the most well-known cardiac arrhythmias in clinical practice, with a prevalence of 1–2% in the community, which can increase the risk of stroke and myocardial infarction. The detection of AF electrocardiogram (ECG) can improve the early detection of diagnosis. In this paper, we have further developed a framework for processing the ECG signal in order to determine the AF episodes. We have implemented machine learning and deep learning algorithms to detect AF. Moreover, the experimental results show that better performance can be achieved with long short-term memory (LSTM) as compared to other algorithms. The initial experimental results illustrate that the deep learning algorithms, such as LSTM and convolutional neural network (CNN), achieved better performance (10%) as compared to machine learning classifiers, such as support vectors, logistic regression, etc. This preliminary work can help clinicians in AF detection with high accuracy and less probability of errors, which can ultimately result in reduction in fatality rate.
Ambient assisted living is good way to look after ageing population that enables us to detect human's activities of daily living (ADLs) and postures, as number of older adults are increasing at rapid pace. Posture detection is used to provide the assessment for monitoring the activity of elderly people. Most of the existing approaches exploit dedicated sensing devices as as cameras, thermal sensors, accelerometer, gyroscope, magnetometer and so on. Traditional methods such as recording data using these sensors, training and testing machine learning classifiers to identify various human postures. This paper exploits data recorded using ubiquitous devices such as smart phones we use on daily basis and classify different human activities such as standing, sitting, laying, walking, walking downstairs and walking upstairs. Moreover, we have used machine learning and deep learning classifiers including random forest, KNN, logistic regression, multilayer perceptron, decision tree, QDA and SVM, convolutional neural network and long short-term memory as ground truth and proposed a novel ensemble classification algorithm to classify each human activity. The proposed algorithm demonstrate classification accuracy of 98% that outperforms other algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.