This newly inaugurated research database for 12-lead electrocardiogram signals was created under the auspices of Chapman University and Shaoxing People’s Hospital (Shaoxing Hospital Zhejiang University School of Medicine) and aims to enable the scientific community in conducting new studies on arrhythmia and other cardiovascular conditions. Certain types of arrhythmias, such as atrial fibrillation, have a pronounced negative impact on public health, quality of life, and medical expenditures. As a non-invasive test, long term ECG monitoring is a major and vital diagnostic tool for detecting these conditions. This practice, however, generates large amounts of data, the analysis of which requires considerable time and effort by human experts. Advancement of modern machine learning and statistical tools can be trained on high quality, large data to achieve exceptional levels of automated diagnostic accuracy. Thus, we collected and disseminated this novel database that contains 12-lead ECGs of 10,646 patients with a 500 Hz sampling rate that features 11 common rhythms and 67 additional cardiovascular conditions, all labeled by professional experts. The dataset consists of 10-second, 12-dimension ECGs and labels for rhythms and other conditions for each subject. The dataset can be used to design, compare, and fine-tune new and classical statistical and machine learning techniques in studies focused on arrhythmia and other cardiovascular conditions.
Background Cardiovascular and other circulatory system diseases have been implicated in the severity of COVID-19 in adults. This study provides a super learner ensemble of models for predicting COVID-19 severity among these patients. Method The Cerner Real-World Database was used for this study. Data on adult patients (18 years or older) with cardiovascular and related circulatory diseases between 2017 and 2019 were retrieved and a total of 13 these conditions were identified. Among these patients, 33,042 admitted with positive diagnoses for COVID-19 between March 2020 and June 2020 (from 59 hospitals) were identified and selected for this study. A total of 14 statistical and machine learning models were developed and combined into a single more powerful super learning model for predicting COVID-19 severity on admission to the hospital. Result LASSO regression, a full extreme gradient boosting model with tree depth of 2, and a full logistic regression model were the most predictive with cross-validated AUROCs of 0.7964, 0.7961, and 0.7958 respectively. The resulting super learner ensemble model had a cross validated AUROC of 0.8006 (range: 0.7814, 0.8163). The unbiased AUROC of the super learner model on an independent test set was 0.8057 (95% CI: 0.7954, 0.8159). Conclusion Highly predictive models can be built to predict COVID-19 severity of patients with cardiovascular and other circulatory conditions. Super learning ensembles will improve individual and classical ensemble models significantly.
The classical Box-Pierce and Ljung-Box tests for auto-correlation of residuals possess severe deviations from nominal type I error rates. Previous studies have attempted to address this issue by either revising existing tests or designing new techniques. The Adjusted Box-Pierce achieves the best results with respect to attaining type I error rates closer to nominal values. This research paper proposes a further correction to the adjusted Box-Pierce test that possesses near perfect type I error rates. The approach is based on an inflation of the rejection region for all sample sizes and lags calculated via a linear model applied to simulated data that encompasses a large range of data scenarios. Our results show that the new approach possesses the best type I error rates of all goodness-of-fit time series statistics.
This thesis work has taken me immeasurable time and energy than I had ever thought, and during this adventure it was frequent for me to loose hope and confidence. Without the supports from advisors, professors, and friends, this research project would not have been a tangible thing. I wish to express my sincere and humble gratitude to Dr.Rakovski who walked me into this gigantic adventure, by constantly giving me abundant help, offering gigantic assistance, unweaving soft and strict guidance. He was reviewing the writing, as when I advanced in my work, in an atmosphere of friendship, conversation and categorical rejection of easy and wrong analysis, mostly when there is a more rigorous and logical way to explain complex mathematical, computational, statistical concepts and data related issues. My respectful and unique thanks to Dr. El-Askary, current Director of the Computational and Data Science(CADS) Department for providing me with the financial and technological means, which produce substantial work. In some sense, I can say that Dr. El-Askary is symptomatic of this big achievement for not only believing in me since day one, but also for being on my side during the most difficult circumstances. Special thanks to CADS's faculty members for making me ready for current and future challenges through their killer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.