Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca ii emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.
With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.
The formation channel of the tens of compact debris discs which orbit white dwarfs (WDs) at a distance of one Solar radius remains unknown. Asteroids that survive the giant branch stellar phases beyond a few au are assumed to be dynamically thrust towards the WD and tidally disrupted within its Roche radius, generating extremely eccentric (e > 0.98) rings.Here, we establish that WD radiation compresses and circularizes the orbits of super-micron to cm-sized ring constituents to entirely within the WD's Roche radius. We derive a closed algebraic formula which well-approximates the shrinking time as a function of WD cooling age, the physical properties of the star and the physical and orbital properties of the ring particles. The shrinking timescale increases with both particle size and cooling age, yielding age-dependent WD debris disc size distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.