This work introduces a finite element model of a steel cable-reinforced conveyor belt to accurately compute stresses in the splice. In the modelled test rig, the belt runs on two drums and is loaded with a cyclic longitudinal force. An explicit solver is used to efficiently handle the high number of elements and contact conditions. This, however, introduces some issues of dynamics in the model, which are subsequently solved: (a) the longitudinal load is applied with a smooth curve and damping is introduced in the beginning of the simulation, (b) residual stresses are applied in regions of the belt that are initially bent around the drums, and (c) supporting drums are introduced at the start of the simulation to hinder oscillations of the belt at low applied forces. To accurately capture the tensile and bending stiffness of the cables, they are modelled by a combination of solid and beam elements. The results show that numerical artefacts can be reduced to an acceptable extent. In the region of highest stresses, the displacements are additionally mapped onto a submodel with a smaller mesh size. The results show that, for the investigated belt, the local maximum principal stresses significantly increase when this region of highest stresses comes into contact with, and is bent by, the drum. Therefore, it is essential to also consider the belt’s bending to predict failure in such applications.
Spiral steel cables feature complex deformation behavior due to their wound geometry. In applications where the cables are used to reinforce rubber components, modeling the cables is not trivial, because the cable’s outer surface must be connected to the surrounding rubber material. There are several options for modeling steel cables using beam and/or solid elements for the cable. So far, no study that lists and evaluates the performance of such approaches can be found in the literature. This work investigates such modeling options for a simple seven-wire strand that is regarded as a cable. The setup, parameter calibration, and implementation of the approaches are described. The accuracy of the obtained deformation behavior is assessed for a three-cable specimen using a reference model that features the full geometry of the wires in the three cables. It is shown that a beam approach with anisotropic beam material gives the most accurate stiffness results. The results of the three-cable specimen model indicate that such a complex cable model is quite relevant for the specimen’s deformation. However, there is no single approach that is well suited for all applications. The beam with anisotropic material behavior is well suited if the necessary simplifications in modeling the cable–rubber interface can be accepted. The present work thus provides a guide not only for calibrating but also for selecting the cable-modeling approach. It is shown how such modeling approaches can be used in commercial FE software for applications such as conveyor belts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.