Among trapping mechanisms in carnivorous plants, those termed ‘active’ have especially fascinated scientists since Charles Darwin’s early works because trap movements are involved. Fast snap-trapping and suction of prey are two of the most spectacular examples for how these plants actively catch animals, mainly arthropods, for a substantial nutrient supply. We show that Drosera glanduligera, a sundew from southern Australia, features a sophisticated catapult mechanism: Prey animals walking near the edge of the sundew trigger a touch-sensitive snap-tentacle, which swiftly catapults them onto adjacent sticky glue-tentacles; the insects are then slowly drawn within the concave trap leaf by sticky tentacles. This is the first detailed documentation and analysis of such catapult-flypaper traps in action and highlights a unique and surprisingly complex mechanical adaptation to carnivory.
We review trapping mechanisms in the carnivorous flowering plant family Droseraceae (order Caryophyllales). Its members are generally known to attract, capture, retain and digest prey animals (mainly arthropods) with active snap-traps (Aldrovanda, Dionaea) or with active sticky flypaper traps (Drosera) and to absorb the resulting nutrients. Recent investigations revealed how the snap-traps of Aldrovanda vesiculosa (waterwheel plant) and Dionaea muscipula (Venus’ flytrap) work mechanically and how these apparently similar devices differ as to their functional morphology and shutting mechanics. The Sundews (Drosera spp.) are generally known to possess leaves covered with glue-tentacles that both can bend toward and around stuck prey. Recently, it was shown that there exists in this genus a higher diversity of different tentacle types and trap configurations than previously known which presumably reflect adaptations to different prey spectra. Based on these recent findings, we finally comment on possible ways for intrafamiliar trap evolution.
Dihydronaphthoquinones are described as constituents of sundews (Drosera), Venus flytraps (Dionaea), and dewy pines (Drosophyllum) for the first time. As in the corresponding naphthoquinones, these reduced derivatives may occur in two regio-isomeric series distinguished by the relative position of a methyl group (at position 2 or 7 in the naphthalene skeleton), depending on the taxon. Species producing plumbagin (2-methyljuglone, 1) do commonly contain the corresponding dihydroplumbagin (5), while species containing ramentaceone (7-methyljuglone, 2) also contain dihydroramentaceone (7-methyl-β-dihydrojuglone, 6). So far, only few species containing plumbagin (1) and dihydroplumbagin (5) additionally form dihydroramentaceone (6) but not ramentaceone (2). Thus, subtle but constant differences in the chemism of closely related and morphologically similar species reliably define and distinguish taxa within D. sect. Arachnopus, which is taken to exemplify their chemotaxonomic utility. The joint presence of quinones and hydroquinones allows observations and predictions on the chemical structures and the reactions of these intriguing natural products.
The Japanese sundews that have previously been collectively called D. indica L. (especially after the influential Flora of Japan, Ohwi 1965:492) are being split up. Various authors (e.g., Watanabe 2013) are trying to re-establish or create one or two additional species assumed endemic to Japan, following the contemporary trend to recognize a number of segregate taxa in Drosera sect. Arachnopus (Greek for “spider leg”), the group that contains D. indica. Previous research (Schlauer et al. 2017, 2018, 2019) has demonstrated a rather unexpected diversity in the naphthoquinones that are characteristic for the different species now recognized in this group. While a few Australian species contain ramentaceone (7-methyljuglone), most contain the regio-isomer plumbagin (2-methyljuglone). So far, only D. indica s.str. (accessions from Asia and Africa have been investigated) contains both isomers in the same plant. The morphological diversity found in Japan thus prompted a chemical investigation, the results of which are reported here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.