Focal adhesion of leukocytes to the blood vessel lining is a key step in inflammation and certain vascular disease processes. Endothelial leukocyte adhesion molecule-1 (ELAM-1), a cell surface glycoprotein expressed by cytokine-activated endothelium, mediates the adhesion of blood neutrophils. A full-length complementary DNA (cDNA) for ELAM-1 has now been isolated by transient expression in COS cells. Cells transfected with the ELAM-1 clone express a surface structure recognized by two ELAM-1 specific monoclonal antibodies (H4/18 and H18/7) and support the adhesion of isolated human neutrophils and the promyelocytic cell line HL-60. Expression of ELAM-1 transcripts in cultured human endothelial cells is induced by cytokines, reaching a maximum at 2 to 4 hours and decaying by 24 hours; cell surface expression of ELAM-1 protein parallels that of the mRNA. The primary sequence of ELAM-1 predicts an amino-terminal lectin-like domain, an EGF domain, and six tandem repetitive motifs (about 60 amino acids each) related to those found in complement regulatory proteins. A similar domain structure is also found in the MEL-14 lymphocyte cell surface homing receptor, and in granule-membrane protein 140, a membrane glycoprotein of platelet and endothelial secretory granules that can be rapidly mobilized (less than 5 minutes) to the cell surface by thrombin and other stimuli. Thus, ELAM-1 may be a member of a nascent gene family of cell surface molecules involved in the regulation of inflammatory and immunological events at the interface of vessel wall and blood.
Dual activation of the glucagon-like peptide 1 (GLP-1) and glucagon receptor has the potential to lead to a novel therapy principle for the treatment of diabesity. Here, we report a series of novel peptides with dual activity on these receptors that were discovered by rational design. On the basis of sequence analysis and structure-based design, structural elements of glucagon were engineered into the selective GLP-1 receptor agonist exendin-4, resulting in hybrid peptides with potent dual GLP-1/glucagon receptor activity. Detailed structure-activity relationship data are shown. Further modifications with unnatural and modified amino acids resulted in novel metabolically stable peptides that demonstrated a significant dose-dependent decrease in blood glucose in chronic studies in diabetic db/db mice and reduced body weight in diet-induced obese (DIO) mice. Structural analysis by NMR spectroscopy confirmed that the peptides maintain an exendin-4-like structure with its characteristic tryptophan-cage fold motif that is responsible for favorable chemical and physical stability.
Bile acids are generated in vivo from cholesterol in the liver, and they undergo an enterohepatic circulation involving the small intestine, liver, and kidney. To understand the molecular mechanism of this transportation, it is essential to gain insight into the three-dimensional (3D) structures of proteins involved in the bile acid recycling in free and complexed form and to compare them with homologous members of this protein family. Here we report the solution structure of the human ileal lipid-binding protein (ILBP) in free form and in complex with cholyltaurine. Both structures are compared with a previously published structure of the porcine ILBP-cholylglycine complex and with related lipid-binding proteins. Protein structures were determined in solution by using two-dimensional (2D)- and 3D-homo and heteronuclear NMR techniques, leading to an almost complete resonance assignment and a significant number of distance constraints for distance geometry and restrained molecular dynamics simulations. The identification of several intermolecular distance constraints unambiguously determines the cholyltaurine-binding site. The bile acid is deeply buried within ILBP with its flexible side-chain situated close to the fatty acid portal as entry region into the inner ILBP core. This binding mode differs significantly from the orientation of cholylglycine in porcine ILBP. A detailed analysis using the GRID/CPCA strategy reveals differences in favorable interactions between protein-binding sites and potential ligands. This characterization will allow for the rational design of potential inhibitors for this relevant system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.