Poloxamer 188 (P188) as a non-ionic surfactant is used in proteinaceous formulations to prevent protein adsorption to hydrophobic surfaces and unfolding at interfaces, preventing the formation of aggregates and particles. Its chemical intactness is crucial to the stability of drug products due to its protecting effects at interfaces. In order to identify and mitigate potential risks that might cause the degradation of P188 during the manufacturing process and storage, in the current work, the stability of P188 was investigated by forced degradation in buffered formulation conditions via oxidation and thermal stress conditions. The process of degradation was monitored through the dedicated liquid adsorption chromatography (LAC) with high sensitivity, and the degradants were characterized by high-resolution mass spectrometry. Results suggest that the vulnerability of P188 is largely related to the buffer conditions. Histidine promotes degradation in the presence of hydroxyl radicals but inhibits the degradation in the presence of H2O2 and alkyl radicals. In thermal stress conditions, histidine protects P188 from degradation at 40 °C, and activates its decay only at higher temperature, like 60 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.