Human skin-derived precursors (SKP) represent a group of somatic stem/precursor cells that reside in dermal skin throughout life that harbor clinical potential. SKP have a high self-renewal capacity, the ability to differentiate into multiple cell types and low immunogenicity, rendering them key candidates for allogeneic cell-based, off-the-shelf therapy. However, potential clinical application of allogeneic SKP requires that these cells retain their therapeutic properties under all circumstances and, in particular, in the presence of an inflammation state. Therefore, in this study, we investigated the impact of pro-inflammatory stimulation on the secretome and immunosuppressive properties of SKP. We demonstrated that pro-inflammatory stimulation of SKP significantly changes their expression and the secretion profile of chemo/cytokines and growth factors. Most importantly, we observed that pro-inflammatory stimulated SKP were still able to suppress the graft-versus-host response when cotransplanted with human PBMC in severe-combined immune deficient (SCID) mice, albeit to a much lesser extent than unstimulated SKP. Altogether, this study demonstrates that an inflammatory microenvironment has a significant impact on the immunological properties of SKP. These alterations need to be taken into account when developing allogeneic SKP-based therapies.
4-hydroxyphenylpyruvate dioxygenase (HPD) is a key enzyme in the catabolism of tyrosine and therefore of great importance as a drug target to treat tyrosine-related inherited metabolic disorders (TIMD). Inhibition of this enzyme is therapeutically applied to prevent accumulation of toxic metabolites in TIMD patients. Nowadays an ex-herbicide, nitisinone, is used for this purpose and many more inhibitors are being explored and need to be tested. Here, we describe a colorimetric bacterial whole-cell screening system that allows quantifying the inhibitory effects of new human HPD inhibitors in a high-throughput and robust fashion. For this high-throughput screening (HTS) system we rely on the capability of recombinant E. coli that express human HPD, to generate a brown ochronotic pigment after the addition of tyrosine, whereafter this brown pigment can be quantified in a very specific and sensitive way by spectrophotometric analysis. Altogether, this robust and simple HTS screening system can be described as non-harmful, non-laborious and cost-effective with the aim to identify and evaluate novel therapeutic human HPD inhibitors for the treatment of TIMD. This robust high-throughput screening system enables rapid identification and evaluation of potential inhibitors of human 4-hydroxyphenylpyruvate dioxygenase. Simple and fast colorimetric quantification of the formation of ochronotic pigment.
Alkaptonuria (AKU) is a rare inborn error of metabolism caused by a defective homogentisate 1,2-dioxygenase (HGD), an enzyme involved in the tyrosine degradation pathway. Loss of HGD function leads to the accumulation of homogentisic acid (HGA) in connective body tissues in a process called ochronosis, which results on the long term in an early-onset and severe osteoarthropathy. HGD’s quaternary structure is known to be easily disrupted by missense mutations, which makes them an interesting target for novel treatment strategies that aim to rescue enzyme activity. However, only prediction models are available providing information on a structural basis. Therefore, an E. coli based whole-cell screening was developed to evaluate HGD missense variants in 96-well microtiter plates. The screening principle is based on HGD’s ability to convert the oxidation sensitive HGA into maleylacetoacetate. More precisely, catalytic activity could be deduced from pyomelanin absorbance measurements, derived from the auto-oxidation of remaining HGA. Optimized screening conditions comprised several E. coli expression strains, varied expression temperatures and varied substrate concentrations. In addition, plate uniformity, signal variability and spatial uniformity were investigated and optimized. Finally, eight HGD missense variants were generated via site-directed mutagenesis and evaluated with the developed high-throughput screening (HTS) assay. For the HTS assay, quality parameters passed the minimum acceptance criterion for Z’ values > 0.4 and single window values > 2. We found that activity percentages versus wildtype HGD were 70.37 ± 3.08% (for M368V), 68.78 ± 6.40% (for E42A), 58.15 ± 1.16% (for A122V), 69.07 ± 2.26% (for Y62C), 35.26 ± 1.90% (for G161R), 35.86 ± 1.14% (for P230S), 23.43 ± 4.63% (for G115R) and 19.57 ± 11.00% (for G361R). To conclude, a robust, simple, and cost-effective HTS system was developed to reliably evaluate and distinguish human HGD missense variants by their HGA consumption ability. This HGA quantification assay may lay the foundation for the development of novel treatment strategies for missense variants in AKU.
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.