Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present.
Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in the Npc1 or Npc2 genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using the Npc1nmf164 mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164 PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found in Npc1-deficient mice. However, in contrast to Npc1nmf164 mice, Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.
Little is known about the effects of NPC1 deficiency in brain development and whether these effects contribute to neurodegeneration in Niemann-Pick disease type C (NPC). Degeneration of cerebellar Purkinje cells occurs at an earlier stage and to a greater extent in NPC; therefore, we analyzed the effect of NPC1 deficiency on microglia and on climbing fiber synaptic refinement during cerebellar postnatal development using the Npc1 nmf164 mouse. Our analysis revealed that NPC1 deficiency leads to early phenotypic changes in microglia that are not associated with an innate immune response. However, the lack of NPC1 in Npc1 nmf164 mice significantly affected the early development of microglia by delaying the radial migration, increasing the proliferation and impairing the differentiation of microglia precursor cells during postnatal development. Additionally, increased phagocytic activity of differentiating microglia was observed at the end of the second postnatal week in Npc1 nmf164 mice. Moreover, significant climbing fiber synaptic refinement deficits along with an increased engulfment of climbing fiber synaptic elements by microglia were found in Npc1 nmf164 mice, suggesting that profound developmental defects in microglia and synaptic connectivity might precede and predispose Purkinje cells to early neurodegeneration in NPC.
Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in the Npc1 or Npc2 genes. Degeneration of PCs occurs early in NPC, however little is known about how NPC1 deficiency affects the postnatal development of PCs. Using the Npc1nmf164 mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164 PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found in Npc1-deficient mice. However, in contrast to Npc1nmf164 mice, Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.