Twitter is a social media platform where over 500 million people worldwide publish their ideas and discuss diverse topics, including their health conditions and public health events. Twitter has proved to be an important source of health-related information on the Internet, given the amount of information that is shared by both citizens and official sources. Twitter provides researchers with a real-time source of public health information on a global scale, and can be very important in public health research. Classifying Twitter data into topics or categories is helpful to better understand how users react and communicate. A literature review is presented on the use of mining Twitter data or similar short-text datasets for public health applications. Each method is analyzed for ways to use Twitter data in public health surveillance. Papers in which Twitter content was classified according to users or tweets for better surveillance of public health were selected for review. Only papers published between 2010–2017 were considered. The reviewed publications are distinguished by the methods that were used to categorize the Twitter content in different ways. While comparing studies is difficult due to the number of different methods that have been used for applying Twitter and interpreting data, this state-of-the-art review demonstrates the vast potential of utilizing Twitter for public health surveillance purposes.
Purpose Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Methods Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. Results This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Conclusion Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.
Soft robotics are robotic systems made of materials that are similar in softness to human soft tissues. Recent medical soft robot designs, including rehabilitation, surgical, and diagnostic soft robots, are categorized by application and reviewed for functionality. Each design is analyzed for engineering characteristics and clinical significance. Current technical challenges in soft robotics fabrication, sensor integration, and control are discussed. Future directions including portable and robust actuation power sources, clinical adoptability, and clinical regulatory issues are summarized.
Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.