These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.
PurposeVarious strategies for improving reliability of fascicle identification on ultrasound images are used in practice, yet these strategies are untested for effectiveness. Studies suggest that the largest part of differences between fascicle lengths on one image are attributed to the error on the initial image. In this study, we compared reliability results between different strategies.MethodsStatic single-image recordings and image sequence recordings during passive ankle rotations of the medial gastrocnemius were collected. Images were tracked by three different raters. We compared results from uninformed fascicle identification (UFI) and results with information from dynamic length changes, or data-informed tracking (DIT). A second test compared tracking of image sequences of either fascicle shortening (initial-long condition) or fascicle lengthening (initial-short condition).ResultsIntra-class correlations (ICC) were higher for the DIT compared to the UFI, yet yielded similar standard error of measurement (SEM) values. Between the initial-long and initial-short conditions, similar ICC values, coefficients of multiple determination, mean squared errors, offset-corrected mean squared errors and fascicle length change values were found for the DIT, yet with higher SEM values and greater absolute fascicle length differences between raters on the first image in the initial-long condition and on the final image in the initial-short condition.ConclusionsDIT improves reliability of fascicle length measurements, without lower SEM values. Fascicle length on the initial image has no effect on subsequent tracking results. Fascicles on ultrasound images should be identified by a single rater and care should be taken when comparing absolute fascicle lengths between studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.