Induced pluripotent stem (iPS) cells can be obtained through the introduction of defined factors into somatic cells1. The combination of Oct4, Sox2 and Klf4 (OSK) constitutes the minimal requirement for generating iPS cells from mouse embryonic fibroblasts (MEFs). These cells are thought to resemble embryonic stem cells (ESCs) based on global gene expression analyses; but, few studies have tested their ability and efficiency in contributing to chimerism, colonization of germ tissues, and most importantly, germ-line transmission and life-birth from iPS cells produced with tetraploid complementation. Through the genomic analyses of ESC genes that have roles in pluripotency and fusion-mediated somatic cell reprogramming, we identified Tbx3 as a transcription factor that significantly improves the quality of iPS cells. Induced-PS cells generated with OSK + Tbx3 (OSKT) are superior in both germ cell contribution to the gonads and germ-line transmission frequency. However, global gene expression profiling could not distinguish between OSK and OSKT iPS cells. Genome-wide ChIP-sequencing analysis of Tbx3 binding sites in ESCs suggests that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. This study underscores the intrinsic qualitative differences between iPS cells generated by different methods and highlights the need to rigorously characterize iPS cells beyond in vitro studies.
A functional polymer (PVK-C60), containing carbazole moieties (electron donors) and fullerene moieties (electron-acceptors) in a molar ratio of about 100:1, was synthesized via covalent tethering of C60 to poly(N-vinylcarbazole) (PVK). The molecular structure and composition of PVK-C60 were characterized by FTIR, Raman, and UV-vis absorption spectroscopy, gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CyV). The C60-modified PVK exhibited an enhanced glass-transition temperature (Tg = 226 degrees C) and good solubility in organic solvents such as toluene, tetrahydrofuran, chloroform, and N,N-dimethylformamide (DMF). It could be cast into transparent films from solutions. For a thin film of PVK-C60 sandwiched between an indium tin oxide (ITO) electrode and an Al electrode (ITO/PVK-C60/Al), the device behaved as nonvolatile flash (rewritable) memory with accessible electronic states that could be written, read, and erased. The polymer memory exhibited an ON/OFF current ratio of more than 105 and write/erase voltages around -2.8 V/+3.0 V. Both the ON and OFF states were stable under a constant voltage stress of -1 V for 12 h and survived up to 108 read cycles at -1 V under ambient conditions.
Many cancer cells contain more than two centrosomes, which imposes a potential for multipolar mitoses, leading to cell death. To circumvent this, cancer cells develop mechanisms to cluster supernumerary centrosomes to form bipolar spindles, enabling successful mitosis. Disruption of centrosome clustering thus provides a selective means of killing supernumerary centrosome-harboring cancer cells. Although the mechanisms of centrosome clustering are poorly understood, recent genetic analyses have identified requirements for both actin and tubulin regulating proteins. In this study, we demonstrate that the integrin-linked kinase (ILK), a protein critically involved in actin and mitotic microtubule organization, is required for centrosome clustering. Inhibition of ILK expression or activity inhibits centrosome clustering in several breast and prostate cancer cell lines that have centrosome amplification. Furthermore, cancer cells with supernumerary centrosomes are significantly more sensitive to ILK inhibition than cells with two centrosomes, demonstrating that inhibiting ILK offers a selective means of targeting cancer cells. Live cell analysis shows ILK perturbation leads cancer cells to undergo multipolar anaphases, mitotic arrest and cell death in mitosis. We also show that ILK performs its centrosome clustering activity in a focal adhesion-independent, but centrosome-dependent, manner through the microtubule regulating proteins TACC3 and ch-TOG. In addition, we identify a specific TACC3 phosphorylation site that is required for centrosome clustering and demonstrate that ILK regulates this phosphorylation in an Aurora-A-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.