Plastic waste is one of the world’s most pressing human health and environmental concerns. Plastic constitutes the third highest waste source globally, with the total volume of plastic waste growing in-line with increases in the global population and per capita consumption. Malaysia is tracking global trends in both the overall generation of plastic waste and the consumption of single-use plastics and since 2017 has been the world’s largest importer of plastic waste. These elements create a number of major challenges for the country’s waste management system. This review outlines the current state of plastic waste production and management in Malaysia, including options for landfill, recycling and incineration. It presents information on the scale and both the human and ecological risks of plastic waste in the country (i.e. microplastics, landfill, incineration), outlines key plastic waste management policy initiatives (including plastics alternatives such as biodegradable plastics) and highlights key constraints on the success of these. Significant internal constraints stem from the inconsistent application of policy initiatives by state governments, in addition to the lack of public awareness and interest in household recycling. The paper closes by discussing options for and constraints on the switch to biodegradable alternatives and proposes a model of plastic management based on a circular economy approach and solid waste management hierarchy. Success in reducing the problems posed by plastic in Malaysia will require sustained effort at many levels, but positive experiences in other countries give some cause for optimism.
Anaerobic digestion has been widely employed in waste treatment for its ability to capture methane gas released as a product during the digestion. Certain wastes, however, cannot be easily digested due to their low nutrient level insufficient for anaerobic digestion, thus co-digestion is a viable option. Numerous studies have shown that using co-substrates in anaerobic digestion systems improve methane yields as positive synergisms are established in the digestion medium, and the supply of missing nutrients are introduced by the co-substrates. Nevertheless, large-scale implementation of co-digestion technology is limited by inherent process limitations and operational concerns. This review summarizes the results from numerous laboratory, pilot, and full-scale anaerobic co-digestion (ACD) studies of wastewater sludge with the co-substrates of organic fraction of municipal solid waste, food waste, crude glycerol, agricultural waste, and fat, oil and grease. The critical factors that influence the ACD operation are also discussed. The ultimate aim of this review is to identify the best potential co-substrate for wastewater sludge anaerobic co-digestion and provide a recommendation for future reference. By adding co-substrates, a gain ranging from 13 to 176% in the methane yield was accomplished compared to the mono-digestions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.