Aims/hypothesis The immune-mediated elimination of pancreatic beta cells in type 1 diabetes involves release of cytotoxic cytokines such as IL-1β and IFNγ, which induce beta cell death in vitro by mechanisms that are both dependent and independent of nitric oxide (NO). Nuclear factor kappa B (NFκB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of proapoptotic genes. NFκB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone deacetylases (HDAC), and positive effects of HDAC inhibition have been obtained in several inflammatory diseases. Thus, the aim of this study was to investigate whether HDAC inhibition protects beta cells against cytokine-induced toxicity. Materials and methods The beta cell line, INS-1, or intact rat islets were precultured with HDAC inhibitors suberoylanilide hydroxamic acid or trichostatin A in the absence or presence of IL-1β and IFNγ. Effects on insulin secretion and NO formation were measured by ELISA and Griess reagent, respectively. iNOS levels and NFκB activity were measured by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone-DNA complex ELISA. Results HDAC inhibition reduced cytokine-mediated decrease in insulin secretion and increase in iNOS levels, NO formation and apoptosis. IL-1β induced a bi-phasic phosphorylation of inhibitor protein kappa Bα (IκBα) with the 2nd peak being sensitive to HDAC inhibition. No effect was seen on IκBα degradation and NFκB DNA binding. Conclusions/interpretation HDAC inhibition prevents cytokine-induced beta cell apoptosis and impaired beta cell function associated with a downregulation of NFκB transactivating activity.
IL-1 plays a major role in inflammation and autoimmunity through activation of nuclear factor kappa B (NFkappaB) and MAPKs. Although a great deal is known about the mechanism of activation of NFkappaB and MAPKs by IL-1, much less is known about the down-regulation of this pathway. Suppressor of cytokine signaling (SOCS)-3 was shown to inhibit IL-1-induced transcription and activation of NFkappaB and the MAPKs JNK and p38, but the mechanism is unknown. We show here that SOCS-3 inhibits NFkappaB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFbeta-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6. Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1. Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS-3 inhibited ubiquitin modification of TRAF6. These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1.
Suppressor of cytokine signaling 3 (SOCS-3) is a negative feedback regulator of IFN-␥ signaling, shown up-regulated in mouse bone marrow cells by the proinflammatory cytokines interleukin-1 (IL-1), tumor necrosis factor-␣ (TNF-␣), and IFN-␥. IL-1 and IFN-␥ alone, or potentiated by TNF-␣, are cytotoxic to the insulin producing pancreatic -cells and -cell lines in vitro and suggested to contribute to the specific -cell destruction in Type-1 diabetes mellitus (T1DM). Using a doxycycline-inducible SOCS-3 expression system in the rat -cell line INS-1, we demonstrate that the toxic effect of both IL-1 or IFN-␥ at concentrations that reduced the viability by 50% over 3 days, was fully preventable when SOCS-3 expression was turned on in the cells. At cytokine concentrations or combinations more toxic to the cells, SOCS-3 overexpression yielded a partial protection. Whereas SOCS-3-mediated inhibition of IFN-␥ signaling is described in other cell systems, SOCS-3 mediated inhibition of IL-1 signaling has not previously been described. In addition we show that SOCS-3 prevention of IL-1-induced toxicity is accompanied by inhibited transcription of the inducible nitric oxide synthase (iNOS) by 80%, resulting in 60% decreased formation of the toxic nitric oxide (NO). Analysis of isolated native rat islets exposed to IL-1 revealed a naturally occurring but delayed up-regulated SOCS-3 transcription. Influencing SOCS-3 expression thus represents an approach for affecting cytokine-induced signal transduction at a proximal step in the signal cascade, potentially useful in future therapies aimed at reducing the destructive potential of -cell cytotoxic cytokines in T1DM, as well as other cytokine-dependent diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.