Effects of M2 tumour-associated macrophages on the pathogenesis of diffuse large B cell lymphoma (DLBCL) are still controversial. Our data showed that the number of CD163-positive M2 macrophages correlated negatively with DLBCL prognosis. Macrophage depletion by clodronate liposomes significantly suppressed tumour growth in a xenograft mouse model of DLBCL using OCI-Ly3 cells. Moreover, M2 polarization of macrophages induced legumain expression in U937 cells. Exogenous legumain promoted degradation of fibronectin and collagen I, which was abolished by administration of a legumain inhibitor RR-11a. Overexpression of legumain in Raw 264.7 cells also induced tube formation of endothelial cells in matrigel. In the xenograft mouse model of DLBCL, decreased fibronectin and collagen I, as well as increased legumain expression and angiogenesis were found at the late stage tumours compared with early stage tumours. Co-localization of legumain and fibronectin was observed in the extracellular matrix of tumour tissues. Administration of the legumain inhibitor to the xenograft DLBCL model suppressed tumour growth, angiogenesis and collagen deposition compared with the control. Taken together, our results suggest that M2 tumour-associated macrophages affect degradation of the extracellular matrix and angiogenesis via overexpression of legumain, and therefore play an active role in the progression of DLBCL.
Drought stress is a global problem, and the lack of water is a key factor that leads to agricultural shortages. MicroRNAs play a crucial role in the plant drought stress response; however, the microRNAs and their targets involved in drought response have not been well elucidated. In the present study, we used Illumina platform () and combined data from miRNA, RNA, and degradome sequencing to explore the drought- and organ-specific miRNAs in orchardgrass (Dactylis glomerata L.) leaf and root. We aimed to find potential miRNA–mRNA regulation patterns responding to drought conditions. In total, 519 (486 conserved and 33 novel) miRNAs were identified, of which, 41 miRNAs had significant differential expression among the comparisons (p < 0.05). We also identified 55,366 unigenes by RNA-Seq, where 12,535 unigenes were differently expressed. Finally, our degradome analysis revealed that 5950 transcripts were targeted by 487 miRNAs. A correlation analysis identified that miRNA ata-miR164c-3p and its target heat shock protein family A (HSP70) member 5 gene comp59407_c0 (BIPE3) may be essential in organ-specific plant drought stress response and/or adaptation in orchardgrass. Additionally, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses found that “antigen processing and presentation” was the most enriched downregulated pathway in adaptation to drought conditions. Taken together, we explored the genes and miRNAs that may be involved in drought adaptation of orchardgrass and identified how they may be regulated. These results serve as a valuable genetic resource for future studies focusing on how plants adapted to drought conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.