We developed a method for systematically comparing gene expression patterns across organisms using genome-wide comparative analysis of DNA microarray experiments. We identified analogous gene expression programs comprising shared patterns of regulation across orthologous genes. Biological features of these patterns could be identified as highly conserved subpatterns that correspond to Gene Ontology categories. Here, we demonstrate these methods by analyzing a specific biological process, aging, and show that similar analysis can be applied to a range of biological processes. We found that two highly diverged animals, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, implement a shared adult-onset expression program of genes involved in mitochondrial metabolism, DNA repair, catabolism, peptidolysis and cellular transport. Most of these changes were implemented early in adulthood. Using this approach to search databases of gene expression data, we found conserved transcriptional signatures in larval development, embryogenesis, gametogenesis and mRNA degradation.Gene expression profiling measures the expression levels of thousands of genes at once 1,2 . Most expression profiling studies have focused on the specific genes that respond to specific conditions, but another important direction in functional genomics is to derive insight from global patterns of gene expression. Genome-scale expression patterns have been used as physiological 'fingerprints' for classifying tumors 3,4 and assigning uncharacterized mutations and drugs to known pathways 5 . Because they use information from many genes at once, patterns have great discriminating power, even when the transcriptional effects on individual genes are small 5,6 .The patterns of changes in gene expression observed in microarray experiments can be extensive and complex. To try to analyze these patterns, we exploited the principle that important biological processes are often conserved between organisms. We present an approach to comparative functional genomics based on shared patterns of regulation across orthologous genes. We also present a method for identifying conserved biological components of those patterns that correspond to Gene Ontology categories. These methods can be used to search databases of microarray experiments to discover connections among biological processes in different organisms. RESULTS Comparing genomic expression patterns across speciesWe used phylogenetic analysis to systematically identify orthologous groups of genes for all pairwise comparisons between C. elegans, D. melanogaster, Saccharomyces cerevisiae and Homo sapiens (Supplementary Tables 1-5 online). For C. elegans and D. melanogaster, we identified 3,851 most-conserved orthologous gene pairs (Fig. 1a).We used DNA microarrays in each organism to compare gene expression under different conditions (Fig. 1b). We then used gene phylogenetic relationships to match systematically the measurements of differential expression between orthologous genes from the tw...
Topoisomerases are crucial to solve DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein deficient in Fragile X syndrome and known to regulate translation of mRNAs important for neuronal function and autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated FMRP mutation, suggesting that Top3β may contribute to pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions related to schizophrenia and autism. Expression of one such gene, ptk2/FAK, is reduced in neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as observed in FMRP mutant animals. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote expression of mRNAs critical for neurodevelopment and mental health.
SummaryWhen considering all possible aging interventions evaluated to date, it is clear that calorie restriction (CR) remains the most robust. Studies in numerous species have demonstrated that reduction of calories 30-50% below ad libitum levels of a nutritious diet can increase lifespan, reduce the incidence and delay the onset of age-related diseases, improve stress resistance, and decelerate functional decline. A current major focus of this research area is whether this nutritional intervention is relevant to human aging. Evidence emerging from studies in rhesus monkeys suggests that their response to CR parallels that observed in rodents. To assess CR effects in humans, clinical trials have been initiated. However, even if results from these studies could eventually substantiate CR as an effective pro-longevity strategy for humans, the utility of this intervention would be hampered because of the degree and length of restriction required. As an alternative strategy, new research has focused on the development of 'CR mimetics'. The objective of this strategy is to identify compounds that mimic CR effects by targeting metabolic and stress response pathways affected by CR, but without actually restricting caloric intake. For example, drugs that inhibit glycolysis (2-deoxyglucose), enhance insulin action (metformin), or affect stress signaling pathways (resveratrol), are being assessed as CR mimetics (CRM). Promising results have emerged from initial studies regarding physiological responses which resemble those observed in CR (e.g. reduced body temperature and plasma insulin) as well as protection against neurotoxicity (e.g. enhanced dopamine action and up-regulated neurotrophic factors). Ultimately, lifespan analyses in addition to expanded toxicity studies must be accomplished to fully assess the potential of any CRM. Nonetheless, this strategy clearly offers a very promising and expanding research endeavor.
SummaryDietary restriction (DR) is well known as a nongenetic intervention that robustly extends lifespan in a variety of species; however, its underlying mechanisms remain unclear. We have found in Caenorhabditis elegans that dietary deprivation (DD) during adulthood, defined as removal of their food source Escherichia coli after the completion of larval development, increased lifespan and enhanced thermotolerance and resistance to oxidative stress. DD-induced longevity was independent of one C. elegans SIRTUIN, sir-2.1 , which is required for the effects of DR, and was independent of the daf-2 /insulin-like signaling pathway that independently regulates longevity and larval diapause in C. elegans . DD did not significantly alter lifespan of fem-1(hc17) ; eat-2(ad465) worms, a genetic model of DR. These findings suggest that DD and DR share some downstream effectors. In addition, DD was detrimental for longevity when imposed on reproductively active young adults, suggesting that DD may only be beneficial in the absence of competing metabolic demands, such as fertility. Adult-onset DD offers a new paradigm for investigating dietary regulation of longevity in C. elegans . This study presents the first evidence that long-term DD, instead of being detrimental, can extend lifespan of a multicellular adult organism.
The nonrandom integration of retrotransposons and retroviruses suggests that chromatin influences target choice. Targeted integration, in turn, likely affects genome organization. In Saccharomyces, native Ty5 retrotransposons are located near telomeres and the silent mating locus HMR. To determine whether this distribution is a consequence of targeted integration, we isolated a transposition-competent Ty5 element from S. paradoxus, a species closely related to S. cerevisiae. This Ty5 element was used to develop a transposition assay in S. cerevisiae to investigate target preference of de novo transposition events. Of 87 independent Ty5 insertions, -30% were located on chromosome III, indicating this small chromosome (-1/40 of the yeast genome) is a highly preferred target. Mapping of the exact location of 19 chromosome III insertions showed that 18 were within or adjacent to transcriptional silencers flanking HML and HMR or the type X subtelomeric repeat. We predict Ty5 target preference is attributable to interactions between transposition intermediates and constituents of silent chromatin assembled at these sites. Ty5 target preference extends the link between telomere structure and reverse transcription as carried out by telomerase and Drosophila retrotransposons.[Key Words: Retrotransposon; Ty5; integration; transposition; silent chromatin; telomere] Received November 17, 1995; revised version accepted January 19, 1996.Mobile genetic elements that replicate by reverse transcription are ubiquitous among eukaryotic genomes. These elements, collectively called retroelements, include the retroviruses and two classes of retrotransposons, which are distinguished by whether or not they are flanked by long terminal repeats [LTRs) (Xiong and Eickbush 1990). A common step in retroelement replication involves the integration of an element's cDNA into the host genome (Brown and Varmus 1989). For the retroviruses and LTR retrotransposons, this step is carried out by a nucleoprotein complex called the integration complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.