Ease of fabrication and design flexibility are two attractive features of low temperature co-fired ceramics (LTCC) technology for fabrication of complex micro-fluidic devices. Such structures are designed and processed using different shaping methods, the extent and complexity of which depends on the final device specifications (dimensions, mechanical and functional properties). In this work, we propose a sacrificial layer method based on carbon-black paste, which burns out during the LTCC firing stage. The paper will summarize the preparation of the paste, influence of processing conditions on the final dimensions, and demonstrate the mechanically integrated structures obtained using this technique. Some of those are membranes of various diameters (7-12mm) with a thickness of 40µm and a variety of internal spacing (15-60µm), free-hanging thick-film resistors (TFR) bridges on LTCC for heating micro-volumes. The main methods of the study will be thermo gravimetric analysis (TGA), scanning electron microscopy (SEM) and dilatometry in addition to electronic instruments for device characterization.
Despite a large amount of data and numerous theoretical proposals, the microscopic mechanism of transport in thick film resistors remains unclear. However, recent low temperature measurements point toward a possible variable range hopping mechanism of transport. Here we examine how such a mechanism affects the gauge factor of thick film resistors. We find that at sufficiently low temperatures T , for which the resistivity follows the Mott's law R(T ) ∼ exp(T0/T ) 1/4 , the gauge factor GF is proportional to (T0/T ) 1/4 . Moreover, the inclusion of Coulomb gap effects leads to GF ∼ (T ′ 0 /T ) 1/2 at lower temperatures. In addition, we study a simple model which generalizes the variable range hopping mechanism by taking into account the finite mean inter-grain spacing. Our results suggest a possible experimental verification of the validity of the variable range hopping in thick film resistors.
A number of evidences suggests that thick-film resistors are close to a metal-insulator transition and that tunneling processes between metallic grains are the main source of resistance. We consider as a minimal model for description of transport properties in thick-film resistors a percolative resistor network, with conducting elements governed by tunneling. For both oriented and randomly oriented networks, we show that the piezoresistive response to an applied strain is model dependent when the system is far away from the percolation thresold, while in the critical region it acquires universal properties. In particular close to the metal-insulator transition, the piezoresistive anisotropy show a power law behavior. Within this region, there exists a simple and universal relation between the conductance and the piezoresistive anisotropy, which could be experimentally tested by common cantilever bar measurements of thick-film resistors.
We propose a model of transport in thick-film resistors which naturally explains the observed nonuniversal values of the conductance exponent t extracted in the vicinity of the percolation transition. Essential ingredients of the model are the segregated microstructure typical of thick-film resistors and tunneling between the conducting grains. Nonuniversality sets in as consequence of wide distribution of interparticle tunneling distances. PACS numbers: 72.60.+g, 64.60.Fr, 72.80.TmThick-film resistors (TFRs) are glass-conductor composites based on RuO 2 (but also Bi 2 Ru 2 O 7 , Pb 2 Ru 2 O 6 , and IrO 2 ) grains mixed and fired with glass powders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.