Developing stable, ubiquitous and efficient water-splitting photocatalyst material that has extensive absorption in the visible-light range is desired for a sustainable solar energy-conversion device. We herein report a triazine-based carbon nitride (CN) material with different C/N ratios achieved by varying the monomer composition ratio between melamine (Mel) and 2,4,6-triaminopyrimidine (TAP). The CN material with a different C/N ratio was obtained through a two-step synthesis protocol: starting with the solution state dispersion of the monomers via hydrogen-bonding supramolecular aggregate, followed by a salt-melt high temperature polycondensation. This protocol ensures the production of a highly crystalline polytriazine imide (PTI) structure consisting of a copolymerized Mel-TAP network. The observed bandgap narrowing with an increasing TAP/Mel ratio is well simulated by density functional theory (DFT) calculations, revealing a negative shift in the valence band upon substitution of N with CH in the aromatic rings. Increasing the TAP amount could not maintain the crystalline PTI structure, consistent with DFT calculation showing the repulsion associated with additional C-H introduced in the aromatic rings. Due to the high exciton binding energy calculated by DFT for the obtained CN, the cocatalyst must be close to any portion of the material to assist the separation of excited charge carriers for an improved photocatalytic performance. The photocatalytic activity was improved by providing a dendritic tipon-like shape grown on a porous fibrous silica KCC-1 spheres, and highly dispersed Pt nanoparticles (<5 nm) were photodeposited to introduce heterojunction. As a result, the Pt/CN/KCC-1 photocatalyst exhibited an apparent quantum efficiency (AQE) as high as 22.1 ± 3% at 400 nm and the silica was also beneficial for improving photocatalytic stability. The results obtained by time-resolved transient absorption spectroscopy measurements were consistent with the improved photocatalytic activity with the slowest carrier recombination for the optimized CN photocatalyst.
Since the discovery of their excellent performance as the light-absorbing semiconducting component in photovoltaic cells, the PbX3CH3NH3 (X = I, Br, Cl) perovskites have received renewed attention. The five polymorphs stable above 200 K - the tetragonal phases for X = I, Br, Cl and the cubic phases for X = I, Br - were studied using periodic DFT calculations involving hybrid functionals (PBE0 and HSE), employing Gaussian-type orbitals as well as plane waves and including relativistic effects (spin-orbit coupling). The influence of the halogen substitution and of the crystal phase on these properties is analysed by comparing the properties obtained in this study to the experimental ones and to the theoretical ones computed using other methods. We show that an accurate treatment of these systems requires the description of dispersion forces and spin-orbit coupling. The different time scales for the electronic and vibrational components of the polarizability inspire the hypothesis that several interfacial charge transfer mechanisms are encountered in the working principle of the photovoltaic devices involving these perovskite materials. The heavy elements in the structure (Pb, I) play a major role in the high polarizability and the low effective charge carrier masses and hence in the low exciton binding energies and the high charge mobility. This systematic work on the PbX3CH3NH3 family offers to theoreticians an overview of the landscape of quantum chemical methods to enable a reasonable choice of methodology for studying these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.