Tapping Panel Dryness (TPD) affects latex production in Hevea brasiliensis. This physiological syndrome involves the agglutination of rubber particles, which leads to partial or complete cessation of latex flow. Latex harvesting consists in tapping soft bark. Ethephon can be applied to stimulate latex flow and its regeneration in laticifers. Several studies have reported transcriptome changes in bark tissues. This study is the first report on deep RNA sequencing of latex to compare the effect of ethephon stimulation and TPD severity. Trees were carefully selected for paired-end sequencing using an Illumina HiSeq 2000. In all, 43 to 60 million reads were sequenced for each treatment in three biological replicates (slight TPD trees without ethephon stimulation, and slight and severe TPD trees with ethephon treatment). Differentially expressed genes were identified and annotated, giving 8,111 and 728 in response to ethephon in slight TPD trees and in ethephon-induced severe TPD trees, respectively. A biological network of responses to ethephon and TPD highlighted the major influence of metabolic processes and the response to stimulus, especially wounding and jasmonate depression in TPD-affected trees induced by ethephon stimulation.
It is predicted that drought will be more frequent and sustained in the future, which may affect the decline of rubber tree production. Therefore, it is critical to research some of the variables related to the drought-resistance mechanism of the rubber tree. As a result, it can be used to guide the selection of new rubber drought-resistance clones. The goal of this study was to identify drought-resistance mechanisms in rubber clones from the high drought factor index (DFI) group using ecophysiological and biochemical variables. The treatments consist of two factors, namely water deficit and contrasting clones based on the DFI variable. The first factor consisted of three levels, namely normal (fraction of transpirable soil water (FTSW) > 0.75), severe water deficit (0.1 < FTSW < 0.20), and recovery condition (FTSW > 0.75 after rewatering). The second factor consisted of seven clones, namely clones G239, GT1 (low DFI), G127, SP 217, PB 260 (moderate DFI), as well as G206 and RRIM 600 (high DFI). RRIM 600 had the highest DFI among the other clones as a drought-tolerance mechanism characteristic. Furthermore, clones RRIM 600, GT1, and G127 had lower stomatal conductance and transpiration rate than drought-sensitive clone PB 260. As a result, as drought avoidance mechanisms, clones RRIM 600, GT1, and G127 consume less water than clone PB 260. These findings indicated that clone RRIM 600 was a drought-resistant clone with drought tolerance and avoidance mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.