We have developed an in vitro evolution method for the selection for catalytic activity under the conditions of free intermolecular interaction between the enzyme and a substrate. The destabilized ternary enzyme-mRNA-ribosome complexes generated by a ribosome display of the mutant library are compartmentalized in vitro by forming a water-in-oil emulsion in such a way, that every droplet would on average contain no more than a single complex. After the complex dissociates within the droplet, the released enzyme molecule is free to interact with a substrate under the selection pressure on all its enzymatic properties (substrate binding, product formation, rate acceleration and turnover) simultaneously-an opportunity for the most efficient selection for catalytic activity. By using the M-MuLV reverse transcriptase as a model, we demonstrated the high efficiency of the method selecting for mutants synthesizing cDNA at increased temperature. A slightly modified compartmentalized ribosome display (CRD) could be used for the selection of other enzymes activities (e.g. DNA polymerase, RNA or DNA ligase terminal nucleotidyl transferase activity). Employment of microfluidics technique could broaden the scope of CRD technique furthermore providing an opportunity to select almost any enzyme at single molecule level under desired conditions.
Personalized medicine and advanced diagnostic tools based on RNA analysis are focusing on fast and direct One-Step RT-PCR assays. First strand complementary DNA (cDNA) synthesized by the reverse transcriptase (RT) is exponentially amplified in the end-point or real-time PCR. Even a minor discrepancy in PCR conditions would result in big deviations during the data analysis. Thus, One-Step RT-PCR composition is typically based on the PCR buffer. In this study, we have used compartmentalized ribosome display technique for in vitro evolution of the Moloney Murine Leukemia Virus reverse transcriptase (M-MuLV RT) that would be able to perform efficient full-length cDNA synthesis in PCR buffer optimized for Thermus aquaticus DNA polymerase. The most frequent mutations found in a selected library were analyzed. Aside from the mutations, which switch off RNase H activity of RT and are beneficial for the full-length cDNA synthesis, we have identified several mutations in the active center of the enzyme (Q221R and V223A/M), which result in 4-5-fold decrease of Km for dNTPs (<0.2 mM). The selected mutations are in surprising agreement with the natural evolution process because they transformed the active center from the oncoretroviral M-MuLV RT-type to the lenitiviral enzyme-type. We believe that this was the major and essential phenotypic adjustment required to perform fast and efficient cDNA synthesis in PCR buffer at 0.2-mM concentration of each dNTP.
The precise diagnostic testing is of high importance in fighting the coronavirus pandemic. While nasopharyngeal (NP) swab testing is currently the gold standard, the SARS-CoV-2 virus could be also detected in some other body fluids. In this study, we aimed to compare the SARS-CoV-2 RNA detection results, obtained using saliva samples and NP swab samples, collected from infected patients and healthy volunteers. Patients and Methods: A total of 111 individuals were enrolled in this study: 53 healthy volunteers, participating in routine testing and 58 COVID-19 patients. Diagnosis for both groups was confirmed using a set of diagnostic CE-IVD labeled RT-qPCR kits. Most of the saliva samples were collected within 48 hours after the NP swabs were taken. RNA was purified from saliva samples and analyzed using a laboratory-developed kit (Diagnolita). Detection results for both sample types were compared and analyzed in terms of result agreement, Ct variation, and quantity of internal control, as well as population analysis. Results: We found a good concordance between the NP swab and saliva samples. The positive percent agreement was 98.28% (CI 90.76-99.96%) and negative percent agreement was 98.11% (CI 89.93-99.95%). Additionally, we observed a statistically significant (p<0.05) and moderately strong (R = 0.53) correlation between Ct values in saliva and NP swab samples. The saliva collection method is more robust since the Ct variation of internal control ribonuclease P mRNA detection is lower in saliva samples. Conclusion: Saliva sample testing is a robust and reliable non-invasive alternative to the NP swab method for SARS-CoV-2 RNA detection, as well as a promising tool for COVID-19 screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.