The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblastmediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen.Collagens are the most abundant protein constituents of the extracellular matrix. The sheet-like collagens of the basement membrane and the fibrillar matrix collagens all incorporate into dense, insoluble protein networks that form a critical barrier against processes of cell migration such as those connected to tissue remodeling, including the invasive growth of cancer. Consequently, the degradation of these matrices is one of the rate-limiting steps in cancer invasion (1).The physiological mechanisms responsible for collagen degradation have long been subject to investigation. Due to their unique structural features, collagens can only be degraded by a minority of mammalian extracellular proteases, but certain matrix metalloproteases (MMPs), 3 such as MMP-1, MMP-2, MMP-8, MMP-13, and the membrane-bound MMP-14 and -15, are indeed active against native collagens (2-10). The initial attack of these proteases leads to the generation of well defined collagen fragments, which, while still in the extracellular environment, may be subject to further degradation by gelatinases, MMP-2 or MMP-9, or other types of proteases (11-13).Importantly, however, collagen may also be degraded through an intracellular turnover pathway (11,14). Recent studies have shown that an endocytic route of collagen breakdown, mediated by the collagen internalization recep...
Epithelial–mesenchymal transition (EMT) is required for mesodermal differentiation during development. The zinc-finger transcription factor, Snail1, can trigger EMT and is sufficient to transcriptionally reprogram epithelial cells toward a mesenchymal phenotype during neoplasia and fibrosis. Whether Snail1 also regulates the behavior of terminally differentiated mesenchymal cells remains unexplored. Using a Snai1 conditional knockout model, we now identify Snail1 as a regulator of normal mesenchymal cell function. Snail1 expression in normal fibroblasts can be induced by agonists known to promote proliferation and invasion in vivo. When challenged within a tissue-like, three-dimensional extracellular matrix, Snail1-deficient fibroblasts exhibit global alterations in gene expression, which include defects in membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive activity. Snail1-deficient fibroblasts explanted atop the live chick chorioallantoic membrane lack tissue-invasive potential and fail to induce angiogenesis. These findings establish key functions for the EMT regulator Snail1 after terminal differentiation of mesenchymal cells.
The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include 1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/ Endo180. 1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.Remodeling of the extracellular matrix is required for a wide range of physiological and pathological conditions such as morphogenesis, organ growth, wound healing, arthritis, fibrosis and tumor growth, and metastasis (1-4). Collagens are the most abundant components of the extracellular matrix with collagen type I as the quantitatively dominating subtype. Thus, collagen constitutes about 25-30% of the dry weight of a human (5). The collagen in the body is undergoing continuous renewal and normally the collagen turnover rate is carefully controlled. Depending on the tissue type or extraneous events the collagen turnover rate can change dramatically. Therefore, highly efficient biological systems are needed in both the formation and degradation of collagen throughout life.In normal healthy tissue, collagen is fully hydroxylated and forms insoluble, cross-linked fibers and sheets of triple helical structures that are resistant to attack by most proteases (6). A number of proteases are nevertheless potentially capable of initiating the collagen degradation process through the cleavage of intact collagen fibers. These proteases are the matrix metalloproteinases (MMPs) 3 MMP-1, MMP-2, MMP-8, MMP-13, MMP-14, MMP-15, and MMP-16 and the cysteine protease cathepsin K (7-9). So far, most studies of collagen turnover have focused on the extracellular collagen degradat...
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/ Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.The breakdown and remodeling of the extracellular matrix (ECM) 2 including the basement membrane are important steps in embryonic growth, tissue rearrangements in the healthy body, and invasive cancer growth (1-3). The ECM is composed of a range of different structural proteins, including collagens, laminins, fibronectin, and proteoglycans. The collagens make up by far the most abundant component. Collagens are trimeric proteins that form unique triple helices and assemble into large supramolecular structures such as fibers and sheets, enabling them to form the barriers and structures of the ECM (4).Collagens undergo a range of post-translational modifications, including extensive hydroxylation of prolyl and lysyl residues, N-and O-linked glycosylation, and processing of proforms (5). The hydroxylation of proline and lysine residues plays a role in triple helix stabilization and cross-linking of collagen molecules and the processing of proforms is important for the assembly of collagens into fibrillar structures (6). In contrast, the role of collagen glycosylation is poorly understood. Most is known about the O-linked glycosylation...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.