Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear. Here, we demonstrate that neurovascular coupling is profoundly disturbed in lipopolysaccharide (LPS) induced systemic inflammation in awake mice. In the 24 hours following LPS injection, the hyperaemic response of pial vessels to functional activation was attenuated and delayed. Concurrently, under steady-state conditions, the capillary network displayed a significant increase in the number of capillaries with blocked blood flow, as well as increased duration of ‘capillary stalls’—a phenomenon previously reported in animal models of stroke and Alzheimer’s disease pathology. We speculate that vascular changes and impaired oxygen availability may affect brain functions following acute systemic inflammation and contribute to the long-term risk of neurodegenerative changes associated with chronic, systemic inflammation.
Rapid and reliable diagnosis is essential in the fight against malaria, which remains one of the most deadly infectious diseases in the world. In the present study we take advantage of a droplet microfluidics platform combined with a novel and user-friendly biosensor for revealing the main malaria-causing agent, the Plasmodium falciparum (P. falciparum) parasite. Detection of the parasite is achieved through detection of the activity of a parasite-produced DNA-modifying enzyme, topoisomerase I (pfTopoI), in the blood from malaria patients. The assay presented has three steps: (1) droplet microfluidics-enabled extraction of active pfTopoI from a patient blood sample; (2) pfTopoI-mediated modification of a specialized DNA biosensor; (3) readout. The setup is quantitative and specific for the detection of Plasmodium topoisomerase I. The procedure is a considerable improvement of the previously published Rolling Circle Enhanced Enzyme Activity Detection (REEAD) due to the advantages of involving no signal amplification steps combined with a user-friendly readout. In combination these alterations represent an important step towards exploiting enzyme activity detection in point-of-care diagnostics of malaria.
Optical coherence tomography (OCT) is applicable to the study of cerebral microvasculature in vivo. Optimised acquisition schemes enable the generation of three-dimensional OCT angiograms, i.e., volumetric images of red blood cell flux in capillary networks, currently at a repetition rate of up to 1/10 seconds. This makes testable a new class of hypotheses that strive to bridge the gap between microscopic phenomena occurring at the spatial scale of neurons, and less invasive but crude techniques to measure macroscopic blood flow dynamics. Here we present a method for quantifying the occurrence of transient capillary stalls in OCT angiograms, i.e., events during which blood flow through a capillary branch is temporarily occluded. By making the assumption that information on such events is present predominantly in the imaging plane, we implemented a pipeline that automatically segments a network of interconnected capillaries from the maximum intensity projections (MIP) of a series of 3D angiograms. We then developed tools enabling rapid manual assessment of the binary flow status (open/stalled) of hundreds of capillary segments based on the intensity profile of each segment across time. The entire pipeline is optimized to run on a standard laptop computer, requiring no high-performance, low-availability resources, despite very large data volumes. To further reduce the threshold of adoption, and ultimately to support the development of reproducible research methods in the young field, we provide the documented code for scrutiny and re-use under a permissive open-source license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.