SUMMARY
G protein-coupled receptor (GPCR)-mediated signal transduction is central to human physiology and disease intervention, yet the molecular mechanisms responsible for ligand-dependent signaling responses remain poorly understood. In Class A GPCRs, receptor activation and G protein coupling entail outward movements of transmembrane segment 6 (TM6). Using single-molecule Fluorescence Resonance Energy Transfer (smFRET) imaging, we examine TM6 motions in the β2 adrenergic receptor (β2AR) upon exposure to orthosteric ligands with different efficacies, in the absence and presence of the Gs heterotrimer. We show that partial and full agonists affect TM6 motions in a manner that differentially regulates the rate at which GDP-bound β2AR-Gs complexes are formed and the efficiency of nucleotide exchange leading to Gs activation. These data also reveal transient nucleotide-bound β2AR-Gs species distinct from known structures and single-molecule perspectives on the allosteric link between ligand and nucleotide binding pockets that shed new light on the G protein activation mechanism.
SummaryThe size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.