Carbamazepine, an anti-epileptic pharmaceutical agent commonly found in wastewater, is highly recalcitrant to standard wastewater treatment practices. This study investigated the mixture toxicity of carbamazepine transformation products formed during UV photolysis using three standard ecotoxicity assays (representing bacteria, algae and crustaceans). UV-treatment of 6 mg L -1 carbamazepine solution was carried out over a 120 min period and samples were removed periodically over the course of the experiment. Quantification results confirmed the degradation of carbamazepine throughout the treatment period, together with concurrent increases in acridine and acridone concentrations. Ecotoxicity was shown to increase in parallel with carbamazepine degradation indicating that the mixture of degradation products formed was more toxic than the parent compound. In fact, ecotoxicity was still greater than 60 % for all three endpoints even when the carbamazepine concentration had decreased to < 1 % of the starting concentration, and acridine and acridone had decreased to < 10 % of their maximum measured concentrations. Single compound toxicity testing also confirmed the higher toxicity of measured degradation products relative to the parent compound. These results show that transformation products considerably more toxic than carbamazepine itself are likely to be produced during UV treatment of wastewater effluents and/or photo-induced degradation of carbamazepine in natural waters. This study highlights the need to consider mixture toxicity and the formation and persistence of toxicologically relevant transformation products when assessing the environmental risks posed by pharmaceutical compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.