Small RNA (sRNA) sequencing has been critical for our understanding of many cellular processes, including gene regulation. Nonetheless, the varying biochemical properties of sRNA, such as 5´ nucleotide modifications, make many sRNA subspecies incompatible with common protocols for sRNA sequencing. Here we describe 5XP-seq that outlines a novel strategy that captures a more complete picture of sRNA. By tagging 5´P sRNA during library preparation, 5XP-seq combines an open approach that includes all types of 5ʹ-terminal modifications (5´X), with a selective approach for 5-phosphorylated sRNA (5´P). We show that 5XP-seq not only enriches phosphorylated miRNA and piRNA but successfully discriminates these sRNA from all other sRNA species. We further demonstrate the importance of this strategy by successful inter-species validation of sRNAs that would have otherwise failed, including human to insect translation of several tRNA (tRFs) and rRNA (rRFs) fragments. By combining 5´ insensitive library strategies with 5´ sensitive tagging, we have successfully tackled an intrinsic bias in modern sRNA sequencing that will help us reveal the true complexity and the evolutionary significance of the sRNA world.
Small RNA (sRNA) sequencing has been critical for our understanding of the transcriptional regulation in most biological processes. Nonetheless, the varying biochemical properties of sRNA, such as 5' nucleotide modifications, make many sRNA subspecies incompatible with common protocols for sRNA sequencing. Here we describe 5XP-seq that outlines a novel strategy on how to overcome this limitation. By specifically tagging 5'-phosphorylated sRNA (5'P sRNA), that enriches miRNA and piRNA, we successfully discriminate these sRNA from all other sRNA species. Our results underscore the importance of more holistic approaches, in which 5' insensitive library strategies are combined with 5' sensitive tagging. Further advances using such strategies will overcome the increasing bias in reports of easily caught sRNA and ensure assessment of the previously overlooked transcriptome.
Small RNA sequencing (sRNA-seq) has become important for studying regulatory mechanisms in many cellular processes. Data analysis remains challenging, mainly because each class of sRNA--such as miRNA, piRNA, tRNA- and rRNA- derived fragments (tRFs/rRFs)--needs special considerations. Analysis therefore involves complex workflows across multiple programming languages, which can produce research bottlenecks and transparency issues. To make analysis of sRNA more accessible and transparent we present seqpac: a tool for advanced group-based analysis of sRNA completely integrated in R. This opens advanced sRNA analysis for Windows users--from adaptor trimming to visualization. Seqpac provides a framework of functions for analyzing a PAC object, which contains 3 standardized tables: sample phenotypic information (P), sequence annotations (A), and a counts table with unique sequences across the experiment (C). By applying a sequence-based counting strategy that maintains the integrity of the fastq sequence, seqpac increases flexibility and transparency compared to other workflows. It also contains an innovative targeting system allowing sequence counts to be summarized and visualized across sample groups and sequence classifications. Reanalyzing published data, we show that seqpac's fastq trimming performs equal to standard software outside R and demonstrate how sequence-based counting detects previously unreported bias. Applying seqpac to new experimental data, we discovered a novel rRF that was down-regulated by RNA pol I inhibition (anticancer treatment), and up-regulated in previously published data from tumor positive patients. Seqpac is available on github (https://github.com/Danis102/seqpac), runs on multiple platforms (Windows/Linux/Mac), and is provided with a step-by-step vignette on how to analyze sRNA-seq data.
Summary Aims: Increasing concentrations of dietary sugar results in a linear accumulation of triglycerides in male Drosophila, while inducing a U-shaped obesity response in their offspring. Here, using a combination of proteomics and small RNA (sRNA) sequencing, we aimed at understanding the molecular underpinning in sperm for such plasticity. Results: Proteomic analysis of seminal vesicles revealed that increasing concentrations of dietary sugar resulted in a bell-shaped induction of proteins involved in metabolic/redox regulation. Using stains and in vivo redox reporter flies, this pattern could be explained by changes in sperm production of reactive oxygen species (ROS), more exactly mitochondria-derived H 2 O 2 . By quenching ROS with the antioxidant N-acetyl cysteine and performing sRNA-seq on sperm, we found that sperm miRNA is increased in response to ROS. Moreover, we found sperm mitosRNA to be increased in high-sugar diet conditions (independent of ROS). Reanalyzing our previously published data revealed a similar global upregulation of human sperm mitosRNA in response to a high-sugar diet, suggesting evolutionary conserved mechanisms. Innovation: This work highlights a fast response to dietary sugar in mitochondria-produced H 2 O 2 in Drosophila sperm and identifies redox-sensitive miRNA downstream of this event. Conclusions: Our data support a model where changes in the sperm mitochondria in response to dietary sugar are the primary event, and changes in redox homoeostasis are secondary to mitochondrial ROS production. These data provide multiple candidates for paternal intergenerational metabolic responses as well as potential biomarkers for human male fertility. Antioxid. Redox Signal . 38, 1167–1183.
A wide spectrum of exogenous factors, including diet, environmental pollutants, stress, and seasonal changes have major impact on sperm quality and function. The molecular basis, however, that explains this susceptibility remains largely unknown. Using a combination of proteomics and small RNA (sRNA) sequencing, we show that Drosophila sperm display rapid molecular changes in response to dietary sugar, both in terms of metabolic/redox proteins and sRNA content, particularly miRNA and mitochondria derived sRNA (mt-sRNA). Thus, results from two independent omics point at the dynamics of mitochondria as the central aspect in rapid metabolic adjustments in sperm. Using specific stains and in vivo redox reporter flies, we show that diet indeed rapidly alters the production of mitochondrial derived reactive oxygen species (ROS). Quenching ROS via supplementation of N acetyl cysteine reduces diet-upregulated miRNA, but not mitochondrial-sRNA. Together, these results open new territories in our search for the mechanistic understanding of sperm health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.