Detailed knowledge about the dynamics and structure of liquids in the vicinity of a solid surface is important in several fields of research. In this study a homogeneous model system of colloidal and nonporous silica particles with a narrow particle size distribution was used to examine such properties of adsorbed water and 1-heptanol. Doublet (1)H water resonances ("Pake doublets") indicate a preferred spatial orientation for the water molecules, as well as a lower molecular density in the surface-induced water structures compared to bulk water. These surface-induced structures are found to extend at least 8 nm from the silica surface. T(1) relaxation measurements at several temperatures indicate weaker H-bonding in the adsorbed water compared to bulk water. T(2) relaxation measurements at several temperatures reveal the presence of two water phases and give quantitative information on the mobility of water molecules and proton exchange processes. The presence of 1-heptanol changes the water characteristics, primarily in the water phase closer to the surface, where water molecules experience decreased translational and increased rotational freedom. In the absence of water, adsorbed 1-heptanol forms surface aggregates encompassing several molecular layers, where the first adsorbed layer shows severe restrictions in mobility and subsequent layers are more mobile.
Coplanar and noncoplanar polychlorinated biphenyls (PCBs) are known to have different routes and degree of toxicity. Here, the effects of noncoplanar PCB 52 and coplanar PCB 77 present at 2 mol % in a model system consisting of POPC liposomes (50% hydrated) are investigated by solid-state (13)C and (31)P NMR at 298 K. Both PCBs intercalate horizontally in the outer part of the bilayer, near the segments of the acyl chain close to the glycerol group. Despite similar membrane locations, the coplanar PCB 77 shows little effect on the bilayer properties overall, except for the four nearest neighboring lipids, while the effect of PCB 52 is more dramatic. The first ∼2 layers of lipids around each PCB 52 in the bilayer form a high fluidity lamellar phase, whereas lipids beyond these layers form a lamellar phase with a slight increase in fluidity compared to a bilayer without PCB 52. Further, a third high mobility domain is observed. The explanation for this is the interference of several high fluidity lamellar phases caused by interactions of PCB 52 molecules in different leaflets of the model bilayer. This causes formation of high curvature toroidal region in the bilayer and might induce formation of channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.