The modern understanding of sleep is based on the classification of sleep into stages defined by their electroencephalography (EEG) signatures, but the underlying brain dynamics remain unclear. Here we aimed to move significantly beyond the current state-of-the-art description of sleep, and in particular to characterise the spatiotemporal complexity of whole-brain networks and state transitions during sleep. In order to obtain the most unbiased estimate of how whole-brain network states evolve through the human sleep cycle, we used a Markovian data-driven analysis of continuous neuroimaging data from 57 healthy participants falling asleep during simultaneous functional magnetic resonance imaging (fMRI) and EEG. This Hidden Markov Model (HMM) facilitated discovery of the dynamic choreography between different whole-brain networks across the wake-non-REM sleep cycle. Notably, our results reveal key trajectories to switch within and between EEG-based sleep stages, while highlighting the heterogeneities of stage N1 sleep and wakefulness before and after sleep.
IMPORTANCEIt is unclear whether a lifestyle intervention can maintain glycemic control in patients with type 2 diabetes. OBJECTIVE To test whether an intensive lifestyle intervention results in equivalent glycemic control compared with standard care and, secondarily, leads to a reduction in glucose-lowering medication in participants with type 2 diabetes. DESIGN, SETTING, AND PARTICIPANTS Randomized, assessor-blinded, single-center study within Region Zealand and the Capital Region of Denmark (April 2015-August 2016). Ninety-eight adult participants with non-insulin-dependent type 2 diabetes who were diagnosed for less than 10 years were included. Participants were randomly assigned (2:1; stratified by sex) to the lifestyle group (n = 64) or the standard care group (n = 34).INTERVENTIONS All participants received standard care with individual counseling and standardized, blinded, target-driven medical therapy. Additionally, the lifestyle intervention included 5 to 6 weekly aerobic training sessions (duration 30-60 minutes), of which 2 to 3 sessions were combined with resistance training. The lifestyle participants received dietary plans aiming for a body mass index of 25 or less. Participants were followed up for 12 months.MAIN OUTCOMES AND MEASURES Primary outcome was change in hemoglobin A 1c (HbA 1c ) from baseline to 12-month follow-up, and equivalence was prespecified by a CI margin of ±0.4% based on the intention-to-treat population. Superiority analysis was performed on the secondary outcome reductions in glucose-lowering medication. RESULTS Among 98 randomized participants (mean age, 54.6 years [SD, 8.9]; women, 47 [48%]; mean baseline HbA 1c , 6.7%), 93 participants completed the trial. From baseline to 12-month follow-up, the mean HbA 1c level changed from 6.65% to 6.34% in the lifestyle group and from 6.74% to 6.66% in the standard care group (mean between-group difference in change of −0.26% [95% CI, −0.52% to −0.01%]), not meeting the criteria for equivalence (P = .15). Reduction in glucose-lowering medications occurred in 47 participants (73.5%) in the lifestyle group and 9 participants (26.4%) in the standard care group (difference, 47.1 percentage points [95% CI, 28.6-65.3]). There were 32 adverse events (most commonly musculoskeletal pain or discomfort and mild hypoglycemia) in the lifestyle group and 5 in the standard care group.CONCLUSIONS AND RELEVANCE Among adults with type 2 diabetes diagnosed for less than 10 years, a lifestyle intervention compared with standard care resulted in a change in glycemic control that did not reach the criterion for equivalence, but was in a direction consistent with benefit. Further research is needed to assess superiority, as well as generalizability and durability of findings.
Blockade of actions from only one of the two L-cell hormones, GLP-1 and PYY, resulted in concomitant increased secretion of the other, probably explaining the absent effect on food intake on these experimental days. Combined blockade of GLP-1 and PYY actions increased food intake after RYGB, supporting that these hormones have a role in decreased food intake postoperatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.