The plankton was examined as an indicator of water quality in 14 shrimp Litopenaeus vannamei farms in Brazil in 2003. The ponds were categorized by high stocking density (>30 PL m(-2)) of phytoplankton, consisting of 51 species with concentrations ranging from 365,218+/-416,615 cells mL(-1) to 1,961,675+/-3,160,172 cells mL(-1). Diatoms contributed to almost 70% of the species number and high densities resulted from Cyanophyta blooms, mainly Pseudanabaena cf limnetica. Forty zooplankton taxa were registered and were essentially composed of typical marine euryhaline species and suspension-feeders. Copepoda dominated (45%) the make-up, followed by Protozoa (18%), Rotifera (12%), and Mollusca (12%) larvae. Zooplankton varied from 972+/-209 ind m(-3) to 4235+/-2877 ind m(-3). Enhanced nutrient input affected plankton density and composition. Diatom and Copepoda dominance was replaced by cyanobacteria, protozoan, and rotifers as nutrient concentrations increased with the cultured period, indicating that plankton structure is affected by eutrophic conditions.
The objective of this study was to quantify the zooplankton biomass transport between the Santa Cruz Channel (SCC) at Catuama north inlet and the adjacent shelf located in Itamaracá estuarine ecosystem, Pernambuco State, Northeastern Brazil. Sampling was carried out in August 2001 at spring and neap tides at three stations every 3-hour interval. Collections were made in three depths with a plankton pump coupled to a 300 µm mesh size net. Current data were obtained with an ADCP (Acoustic Doppler Current Profiler). In laboratory, samples were filtered for wet weigh determination. High biomass variation was recorded, with highest values at nocturnal flood and ebb during spring tide. The average instantaneous biomass transport was 139.48 ± 72.58 mg.m-2s-1, during spring tide and 36.63 ± 27.66 mg.m-2s-1, during neap tide. No significant difference was registered between importation and exportation flows (p > 0.05), showing that the estuary both exports and imports high biomass during the rainy season. It can be concluded that the outwelling at SCC is high, however, differently from other places, importation is also high, probably due to the presence of reefs and patches of seagrass (Halodule wrightii) toward the shelf that create a distinct productive environment.
Este trabalho objetivou quantificar o transporte da biomassa zooplanctônica entre o Canal de Santa Cruz (CSC), na Barra de Catuama, e a plataforma adjacente no sistema estuarino de Itamaracá, Nordeste do Brasil. As coletas foram realizadas em agosto/2001 durante as marés de sizígia e quadratura em três estações a cada 3 horas. As coletas foram em três profundidades com auxílio de bomba acoplada à rede de plâncton com 300 µm de abertura de malha. Dados de corrente foram obtidos com perfilador acústico de corrente (ADCP). Em laboratório, as amostras foram pesadas para obter o peso úmido. Foram registradas grandes variações na biomassa com valores mais altos nas marés enchente e vazante noturna durante maré de sizígia. O transporte instantâneo médio da biomassa foi de 139,48 ± 72,58 mg.m-2.s-1, durante a sizígia, e de 36,63 ± 27,66 mg.m-2.s-1, durante a quadratura. Os fluxos de importação e exportação não apresentaram diferenças significativas (p > 0,05), evidenciando exportação e importação de grande quantidade de biomassa no período chuvoso. Conclui-se que a exportação do CSC é alta, porém diferentemente de outros locais, a importação também é alta, possivelmente pela presença de recifes e prados de fanerógamas (Halodule wrightii) em direção à plataforma, criando um ambiente produtivo distinto
A new open access database, Brazilian Marine Biodiversity (BaMBa) (https://marinebiodiversity.lncc.br), was developed in order to maintain large datasets from the Brazilian marine environment. Essentially, any environmental information can be added to BaMBa. Certified datasets obtained from integrated holistic studies, comprising physical–chemical parameters, -omics, microbiology, benthic and fish surveys can be deposited in the new database, enabling scientific, industrial and governmental policies and actions to be undertaken on marine resources. There is a significant number of databases, however BaMBa is the only integrated database resource both supported by a government initiative and exclusive for marine data. BaMBa is linked to the Information System on Brazilian Biodiversity (SiBBr, http://www.sibbr.gov.br/) and will offer opportunities for improved governance of marine resources and scientists’ integration.Database URL: http://marinebiodiversity.lncc.br
A B S T R A C TIsland environments drastically modify the hydrodynamics of ocean currents and generate strong vertical turbulence. This leads to an upward transport of nutrient-rich waters, thus increasing the biomass of plankton in these oceanic marine environments. The objective of this study was to assess the biomass and density of the zooneuston communities in relation to the upper and lower layers (epi-/hyponeuston), the nycthemeral variation (day/night), the currents in relation to the island (downstream vs upstream), and the distance from the island, focusing on the spatial variability. Samples were taken in July and August 2010 with a David-Hempel neuston net (Hydro-Bios) with a mesh size of 500 μm. Twenty-one taxa were recorded. The most abundant taxa were Copepoda, Chaetognatha, Teleostei (eggs) and Hydrozoa. This is the first record of phoronid larvae for the waters of the Tropical Atlantic. For both layers, density and biomass were significantly higher at night. Density and biomass were always significantly higher in the upper (epineuston) layer than in the lower (hyponeuston) layer. This was probably due to a zooneuston aggregation at the surface and massive vertical migration from deep waters at night, leading to increased abundances at night in both neuston layers. R E S U M OAmbientes insulares são responsáveis pela modificação da hidrodinâmica das correntes oceânicas e por gerar turbulência vertical. Esta faz com que águas da camada inferior ricas em nutrientes sejam elevadas à região superior da coluna de água, aumentando a biomassa do plâncton local. O objetivo deste trabalho foi avaliar a biomassa e a densidade e das comunidades do zoonêuston em relação às camadas superior e inferior da coluna de água (epi/hiponêuston), à variação nictemeral (dia/noite), corrente superficial predominante (jusante/montante) e à distância da ilha, com foco na variabilidade espacial do plâncton. Amostragens foram realizadas de julho a agosto de 2010 com uma rede de nêuston David-Hempel (Hydro-Bios) com malha de 500 μm. Vinte e um táxons foram registrados, sendo os mais abundantes Copepoda, Chaetognatha, Teleostei (ovos) e Hydrozoa. Apresenta-se também o primeiro registro de larvas de Phoronida para o Atlântico Tropical. Para ambas as camadas, a densidade e a biomassa foram significativamente mais elevadas durante a noite e também significativamente maiores no epinêuston. Este fato provavelmente ocorreu devido à agregação do zoonêuston na superfície do oceano e à forte migração vertical a partir de camadas profundas durante a noite, levando a um aumento das abundâncias dos organismos nesse período, em ambas as camadas neustônicas.
Connectivity Between Coastal-Oceanic Zooplankton the reproduction and the trophic strategies were the main factors in structuring the community. We found a pelagic gradient for the zooplankton community varying from a low diverse eutrophic coastal area to a high diverse oligotrophic oceanic area, located over a varied, high biomass benthic habitat, which is mostly covered by calcareous algae functioning on the shallow shelf as a large reef system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.