Ultrasonography can detect structural muscle changes caused by neuromuscular disease. Quantitative analysis is the preferred method to determine if ultrasound findings are within normal limits, but normative data are incomplete. The purpose of this study was to provide normative muscle ultrasonography data for muscle thickness and echo intensity for five different muscle groups in adults. Bilateral scans of the sternocleidomastoid, biceps brachii/brachialis, forearm flexor group, quadriceps femoris, and tibialis anterior were made in 95 volunteers, aged 17-90 years. Both muscle thickness and echo intensity showed gender differences and a muscle-specific non-linear correlation with age. The muscles of the upper extremities showed right-left differences. These data demonstrate the effect of age on muscle characteristics and provide normative values that can be used in clinical practice.
Muscle ultrasound is a useful tool in the diagnosis of neuromuscular disorders, as these disorders result in muscle atrophy and intramuscular fibrosis and fatty infiltration, which can be visualized with ultrasound. Several prospective studies have reported high sensitivities and specificities in the detection of neuromuscular disorders. Although not investigated in large series of patients, different neuromuscular disorders tend to show specific changes on muscle ultrasound, which can be helpful in differential diagnosis. For example, Duchenne muscular dystrophy results in a severe, homogeneous increase of muscle echo intensity with normal muscle thickness, whereas spinal muscular atrophy shows an inhomogeneous increase of echo intensity with severe atrophy. A major advantage of muscle ultrasound, compared to other imaging techniques, is its ability to visualize muscle movements, such as muscle contractions and fasciculations. This study reviews the possibilities and limitations of ultrasound in muscle imaging and its value as a diagnostic tool in neuromuscular disorders.
Muscle ultrasound is a convenient technique to visualize normal and pathological muscle tissue as it is non-invasive and real-time. Neuromuscular disorders give rise to structural muscle changes that can be visualized with ultrasound: atrophy can be objectified by measuring muscle thickness, while infiltration of fat and fibrous tissue increase muscle echo intensity, i.e. the muscles become whiter on the ultrasound image. Muscle echo intensity need to be quantified to correct for age-related increase in echo intensity and differences between individual muscles. This can be done by gray scale analysis, a method that can be easily applied in daily clinical practice. Using this technique it is possible to detect neuromuscular disorders with predictive values of 90 percent. Only in young children and metabolic myopathies the sensitivity is lower. Ultrasound is a dynamic technique and therefore capable of visualizing normal and pathological muscle movements. Fasciculations can easily be differentiated from other muscle movements. Ultrasound appeared to be even more sensitive in detecting fasciculations compared to EMG and clinical observations, because it can visualize a large muscle area and deeper located muscles. With improving resolution and frame rate it has recently become clear that also smaller scale spontaneous muscle activity such as fibrillations can be detected by ultrasound. This opens the way to a broader use of muscle ultrasound in the diagnosis of peripheral nerve and muscle disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.