Phosphodiesterase 4 (PDE4), the primary cAMP-hydrolyzing enzyme in cells, is a promising drug target for a wide range of conditions. Here we present seven co-crystal structures of PDE4 and bound inhibitors that show the regulatory domain closed across the active site, thereby revealing the structural basis of PDE4 regulation. This structural insight, together with supporting mutagenesis and kinetic studies, allowed us to design small-molecule allosteric modulators of PDE4D that do not completely inhibit enzymatic activity (I(max) approximately 80-90%). These allosteric modulators have reduced potential to cause emesis, a dose-limiting side effect of existing active site-directed PDE4 inhibitors, while maintaining biological activity in cellular and in vivo models. Our results may facilitate the design of CNS therapeutics modulating cAMP signaling for the treatment of Alzheimer's disease, Huntington's disease, schizophrenia and depression, where brain distribution is desired for therapeutic benefit.
Here we present an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for extracellular measurements of known and unexpected metabolites in parallel. The method was developed by testing 86 metabolites, including amino acids, organic acids, sugars, purines, pyrimidines, vitamins, and nucleosides, that can be resolved by combining chromatographic and m/z dimensions. Subsequently, a targeted quantitative method was developed for 80 metabolites. The presented method combines a UPLC approach using hydrophilic interaction liquid chromatography (HILIC) and MS detection achieved by a hybrid quadrupole-time of flight (Q-ToF) mass spectrometer. The optimal setup was achieved by evaluating reproducibility and repeatability of the analytical platforms using pooled quality control samples to minimize the drift in instrumental performance over time. Then, the method was validated by analyzing extracellular metabolites from acute lymphoblastic leukemia cell lines (MOLT-4 and CCRF-CEM) treated with direct (A-769662) and indirect (AICAR) AMP activated kinase (AMPK) activators, monitoring uptake and secretion of the targeted compound over time. This analysis pointed towards a perturbed purine and pyrimidine catabolism upon AICAR treatment. Our data suggest that the method presented can be used for qualitative and quantitative analysis of extracellular metabolites and it is suitable for routine applications such as in vitro drug screening.
Metabolic models can provide a mechanistic framework to analyze information-rich omics data sets, and are increasingly being used to investigate metabolic alternations in human diseases. An expression of the altered metabolic pathway utilization is the selection of metabolites consumed and released by cells. However, methods for the inference of intracellular metabolic states from extracellular measurements in the context of metabolic models remain underdeveloped compared to methods for other omics data. Herein, we describe a workflow for such an integrative analysis emphasizing on extracellular metabolomics data. We demonstrate, using the lymphoblastic leukemia cell lines Molt-4 and CCRF-CEM, how our methods can reveal differences in cell metabolism. Our models explain metabolite uptake and secretion by predicting a more glycolytic phenotype for the CCRF-CEM model and a more oxidative phenotype for the Molt-4 model, which was supported by our experimental data. Gene expression analysis revealed altered expression of gene products at key regulatory steps in those central metabolic pathways, and literature query emphasized the role of these genes in cancer metabolism. Moreover, in silico gene knock-outs identified unique control points for each cell line model, e.g., phosphoglycerate dehydrogenase for the Molt-4 model. Thus, our workflow is well-suited to the characterization of cellular metabolic traits based on extracellular metabolomic data, and it allows the integration of multiple omics data sets into a cohesive picture based on a defined model context.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-014-0721-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.