Posttranslational core histone acetylation is established and maintained by histone acetyltransferases and deacetylases. Both have been identified as important transcriptional regulators in various eukaryotic systems. In contrast to nonplant systems where only RPD3-related histone deacetylases (HD) have been characterized so far, maize embryos contain three unrelated families of deacetylases (HD1A, HD1B, and HD2). Purification, cDNA cloning, and immunological studies identified the two maize histone deacetylase HD1B forms as close homologues of the RPD3-type deacetylase HDAC1. Unlike the other maize deacetylases, HD1A and nucleolar HD2, HD1B copurified as a complex with a protein related to the retinoblastoma-associated protein, Rbap46. Two HD1B mRNA species could be detected on RNA blots, encoding proteins of 58 kDa (HD1B-I) and 51 kDa (HD1B-II). HD1B-I (zmRpd3) represents the major enzyme form as judged from RNA and immunoblots. Levels of expression of HD1B-I and -II mRNA differ during early embryo germination; HD1B-I mRNA and protein are present during the entire germination pathway, even in the quiescent embryo, whereas HD1B-II expression starts when meristematic cells enter S-phase of the cell cycle. In line with previous results, HD1B exists as soluble and chromatin-bound enzyme forms. In vivo treatment of meristematic tissue with the deacetylase inhibitor HC toxin does not affect the expression of the three maize histone deacetylases, whereas it causes downregulation of histone acetyltransferase B.
A gene, HDC1 , related to the Saccharomyces cerevisiae histone deacetylase (HDAC) gene HOS2 , was isolated from the filamentous fungus Cochliobolus carbonum , a pathogen of maize that makes the HDAC inhibitor HC-toxin. Engineered mutants of HDC1 had smaller and less septate conidia and exhibited an ف 50% reduction in total HDAC activity. Mutants were strongly reduced in virulence as a result of reduced penetration efficiency. Growth of hdc1 mutants in vitro was normal on glucose, slightly decreased on sucrose, and reduced by 30 to 73% on other simple and complex carbohydrates. Extracellular depolymerase activities and expression of the corresponding genes were downregulated in hdc1 mutant strains. Except for altered conidial morphology, the phenotypes of hdc1 mutants were similar to those of C. carbonum strains mutated in ccSNF1 encoding a protein kinase necessary for expression of glucose-repressed genes. These results show that HDC1 has multiple functions in a filamentous fungus and is required for full virulence of C. carbonum on maize.
A gene, HDC1, related to the Saccharomyces cerevisiae histone deacetylase (HDAC) gene HOS2, was isolated from the filamentous fungus Cochliobolus carbonum, a pathogen of maize that makes the HDAC inhibitor HC-toxin. Engineered mutants of HDC1 had smaller and less septate conidia and exhibited an approximately 50% reduction in total HDAC activity. Mutants were strongly reduced in virulence as a result of reduced penetration efficiency. Growth of hdc1 mutants in vitro was normal on glucose, slightly decreased on sucrose, and reduced by 30 to 73% on other simple and complex carbohydrates. Extracellular depolymerase activities and expression of the corresponding genes were downregulated in hdc1 mutant strains. Except for altered conidial morphology, the phenotypes of hdc1 mutants were similar to those of C. carbonum strains mutated in ccSNF1 encoding a protein kinase necessary for expression of glucose-repressed genes. These results show that HDC1 has multiple functions in a filamentous fungus and is required for full virulence of C. carbonum on maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.