There are at least 250 enzymes in Mycobacterium tuberculosis (M. tuberculosis) involved in lipid metabolism. Some of the enzymes are required for bacterial survival and full virulence. The esterase Rv0045c shares little amino acid sequence similarity with other members of the esterase/lipase family. Here, we report the 3D structure of Rv0045c. Our studies demonstrated that Rv0045c is a novel member of α/β hydrolase fold family. The structure of esterase Rv0045c contains two distinct domains: the α/β fold domain and the cap domain. The active site of esterase Rv0045c is highly conserved and comprised of two residues: Ser154 and His309. We proposed that Rv0045c probably employs two kinds of enzymatic mechanisms when hydrolyzing C-O ester bonds within substrates. The structure provides insight into the hydrolysis mechanism of the C-O ester bond, and will be helpful in understanding the ester/lipid metabolism in M. tuberculosis.
In the respiratory tract and lung tissue, a balanced physiological response is essential for Actinobacillus pleuropneumoniae to survive various types of challenges. ClpP, the catalytic core of the Clp proteolytic complex, is involved in various stresses response and regulation of biofilm formation in many pathogenic bacteria. To investigate the role of ClpP in the virulence of A. pleuropneumoniae, the clpP gene was deleted by homologous recombination, resulting in the mutant strain S8ΔclpP. The reduced growth of S8ΔclpP mutant at high temperatures and under several other stress conditions suggests that the ClpP protein is required for the stress tolerance of A. pleuropneumoniae. Interestingly, we observed that the S8ΔclpP mutant exhibited an increased ability to take up iron in vitro compared to the wild-type strain. We also found that the cells without ClpP displayed rough and irregular surfaces and increased cell volume relative to the wild-type strain using scanning electron microscopy (SEM). Confocal laser scanning microscopy (CLSM) revealed that the S8ΔclpP mutant showed decreased biofilm formation compared to the wild-type strain. We examined the transcriptional profiles of the wild type S8 and the S8ΔclpP mutant strains of A. pleuropneumoniae using RNA sequencing. Our analysis revealed that the expression of 16 genes was changed by the deletion of the clpP gene. The data presented in this study illustrate the important role of ClpP protease in the stress response, iron acquisition, cell morphology and biofilm formation related to A. pleuropneumoniae and further suggest a putative role of ClpP protease in virulence regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.