ETT connections and secretions cause a variance in resistance. Tracheal pressure can be measured with high precision with an air- or liquid-filled catheter. An end hole catheter placed within 2 cm above or below the ETT tip will give sufficiently precise measurements for clinical purposes.
We describe a method based on a Fabry-Perot interferometer at the tip of an optic fiber with a diameter of 0.25 mm for direct measurement of tracheal pressure in pediatric respiratory monitoring. The response time of the pressure transducer and its influence on the resistance of pediatric endotracheal tubes (internal diameter, 2.5 to 5 mm) during constant and dynamic flow at different ventilator settings in a lung model were measured. The transducer was positioned at Ϫ1.5 (inside), 0, and ϩ1.5 cm (outside) relative to the tip of the endotracheal tube and compared with a reference pressure inside the trachea. The clinical application of the transducer was tested in five pediatric patients. The response time of the transducer was 1.3 ms. The influence of the fiberoptic transducer on tube resistance was negligible during constant flow in inspiratory and expiratory directions for all endotracheal tubes tested. There was no difference in pressure measurements with the transducer positioned at or 1.5 cm below or above the tip of the endotracheal tube during dynamic measurements. During clinical circumstances insertion of the fiberoptic transducer was easy, recordings were stable, and the safety of the patient was not jeopardized. The fiberoptic transducer provided a reliable and promising way of monitoring tracheal pressure in intubated pediatric patients. The presence of the probe did not interfere with either pressure-flow relationship or patient care and safety. The technique is proposed for monitoring of respiratory mechanics and calculation of changes in tube resistance caused by kinking and secretions. Respiratory monitoring in pediatric intensive care is currently represented by proximal P/V loops obtained in ventilator software or intensive care monitors using flowmeters placed near the connection between the ventilator system and ETT. This is obviously insufficient as information gained from such P/V loops mainly stems from ETT resistance and performance of ventilator valves. We have previously demonstrated that monitoring respiratory mechanics by direct measurement of tracheal pressure offers considerable advantages compared with monitoring based on either measurements obtained proximal to the tube or tracheal pressures calculated by subtracting pressure needed to overcome flow-dependent tube resistance. In the adult setting tracheal pressure measurement is accomplished by introducing an air-or liquid-filled catheter into the ETT and connecting it to a conventional pressure transducer (1). In the pediatric setting it has generally been held to be impossible to use endotracheal catheters for continuous pressure measurement owing to the encroachment on cross-sectional area of the narrow pediatric tubes (2). Instead hydrodynamic models of varying complexity have been proposed for the calculation of tracheal pressure, i.e. the pressure fall across the ETT because of its resistance, based on measurements above the tube. Guttmann et al. (2)
Effective recruitment resulted in systemic hypotension, pulmonary hypertension, and decrease in aortic blood flow especially in endotoxinemic animals. Circulatory depression may be attenuated using recruitment manoeuvres during ongoing pressure-controlled ventilation and by prior volume expansion.
CSS should not be used in volume control ventilation due to risk of high intrinsic PEEP levels at insertion of the catheter and extreme negative pressures during suctioning. Pressure control ventilation produces less intrinsic PEEP effect. The continuous positive airway pressure (CPAP) mode offers the least intrinsic PEEP during insertion of the catheter and least sub-atmospheric pressure during suctioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.